1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
9

A Texas cockroach of mass 0.157 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical a

xle) that has a radius 14.9 cm, rotational inertia 5.92 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.92 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.89 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?
Physics
1 answer:
VashaNatasha [74]3 years ago
8 0

Answer:

-7.23 rad/s

Explanation:

Given that

Mass of the cockroach, m = 0.157 kg

Radius of the disk, r = 14.9 cm = 0.149 m

Rotational Inertia, I = 5.92*10^-3 kgm²

Speed of the cockroach, v = 2.92 m/s

Angular velocity of the rim, w = 3.89 rad/s

The initial angular momentum of rim is

Iw = 5.92*10^-3 * 3.89

Iw = 2.3*10^-2 kgm²/s

The initial angular momentum of cockroach about the axle of the disk is

L = -mvr

L = -0.157 * 2.92 * 0.149

L = -0.068 kgm²/s

This means that we can get the initial angular momentum of the system by summing both together

2.3*10^-2 + -0.068

L' = -0.045 kgm²/s

After the cockroach stops, the total inertia of the spinning disk is

I(f) = I + mr²

I(f) = 5.92*10^-3 + 0.157 * 0.149²

I(f) = 5.92*10^-3 + 3.49*10^-3

I(f) = 9.41*10^-3 kgm²

Final angular momentum of the disk is

L'' = I(f).w(f)

L''= 9.41*10^-3w(f)

Using the conservation of total angular momentum, we have

-0.068 = 9.41*10^-3w(f) + 0

w(f) = -0.068 / 9.41*10^-3

w(f) = -7.23 rad/s

Therefore, the speed of the lazy Susan after the cockroach stops is -7.23 and is directed in the opposite direction of the initial lazy Susan angular speed

b)

The mechanical energy of the cockroach is not converted as it stops

You might be interested in
How?? anyone?!...........
Mariana [72]
-- find the horizontal and vertical components of F1.

-- find the horizontal and vertical components of F2.

-- find the horizontal and vertical components of F3.

-- add up the 3 horizontal components; their sum is the horizontal component of the resultant.

-- add up the 3 vertical components; their sum is the vertical component of the resultant.

-- the magnitude of the resultant is the square root of (vertical component^2 + horizontal component^2)

-- the direction of the resultant is the angle whose tangent is (vertical component/horizontal component), starting from the positive x-direction.
8 0
3 years ago
A 1.5m long string weighs 0.0020 kg. It is tensioned to 100N. A disturbance travels along it with a wavelength of 1.5m, find:a)
Zigmanuir [339]

Answer:

the propagation velocity of the wave is 274.2 m/s

Explanation:

Given;

length of the string, L = 1.5 m

mass of the string, m = 0.002 kg

Tension of the string, T = 100 N

wavelength, λ = 1.5 m

The propagation velocity of the wave is calculated as;

v = \sqrt{\frac{T}{\mu} } \\\\\mu \ is \ mass \ per \ unit \ length \ of \ the \ string\\\\\mu = \frac{0.002 \ kg}{1.5 \ m} = 0.00133 \ kg/m\\\\v = \sqrt{\frac{100}{0.00133} } \\\\v = 274.2 \ m/s

Therefore, the propagation velocity of the wave is 274.2 m/s

7 0
2 years ago
A 3) How far will 20 N of force stretch a spring with a spring constant of 140 N/m?​
anyanavicka [17]

Answer:

I think the answer is

Explanation:

140N/m/20N =

7m is the answer

8 0
2 years ago
Read 2 more answers
Water from a vertical pipe emerges as a 10-cm-diameter cylinder and falls straight down 7.5 m into a bucket. The water exits the
cupoosta [38]

The diameter of the column of the water as it hits the bucket is 4.04 cm

The equation of continuity occurs in the fluid system and it asserts that the inflow and the outflow of the volume rate at the inlet and at the outlet of the system are equal.

By using the kinematics equation to determine the speed of the water in the bucket and applying the equation of continuity to estimate the diameter of the column, we have the following;

Using the kinematics equation:

\mathbf{v_f ^2 = v_i^2 + 2gh}

\mathbf{v_f ^2 =(2.0)^2 + 2\times 9.8 \times 7.5}

\mathbf{v_f ^2 =151 m/s}

\mathbf{v_f  =\sqrt{151 m/s}}

\mathbf{v_f  =12.29 \ m/s}  

From the equation of continuity:

\mathbf{A_iV_i = A_fV_f}

\mathbf{\pi r^2_iV_i = \pi r^2_fV_f}

\mathbf{ r^2_iV_i =  r^2_fV_f}

\mathbf{ (\dfrac{10}{2})^2\times 2.0 =  r_f^2 \times 12.29}

\mathbf{ 50 = 12.29 \times r_f^2}

\mathbf{ r_f=  \sqrt{\dfrac{50}{12.29} }}

\mathbf{ V_f= 2.02 \ cm }

Since diameter = 2r;

∴

The diameter of the column of the water is:

= 2(2.02) cm

= 4.04 cm

Learn more about the equation of continuity here:

brainly.com/question/10822213

6 0
2 years ago
You pull with a force of 295 N on a rope that is attached to a block of mass 22 kg, and the block slides across the floor at a c
Sergeeva-Olga [200]

Answer:

Fnet = 0

Explanation:

  • Since the block slides across the floor at constant speed, this means that it's not accelerated.
  • According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
  • This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

       F_{appx} = F_{app} * cos \theta = 295 N * cos 35 = 242 N  (1)

  • In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

      F_{appy} = F_{app} * cos \theta = 295 N * sin 35 = 169 N  (2)

⇒    169 N + Fn = Fg = 216 N  (3)

  • This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
  • Fn = 216 N - 169 N = 47  N (4)

6 0
2 years ago
Other questions:
  • Rain falls vertically downward with the velocity of 3.3 m/s. a boy moves at a speed of 5 m/s east in a bicycle with an umbrella.
    5·1 answer
  • An iron ball and an aluminum ball of mass 100 g each are heated to the same temperature and then cooled to a temperature of 20°C
    8·1 answer
  • A 5.5kg mass is pushed with a force of 31N across a table having μk of 0.350. Find how fast it will accelerate, taking friction
    9·1 answer
  • Two trains are traveling on the same track and in the same direction. The first train, which is behind the second train, blows a
    14·1 answer
  • Nearly all physics problems will use the unit m/s^2 for acceleration. Explain why the seconds are squared. Why isn't the unit gi
    10·1 answer
  • A parachute on a racing dragster opens and changes the speed of the car from 95 m/s to 35 m/s in a period of 6.5 seconds. What i
    6·1 answer
  • Two cars are travelling in the same direction on a road. The blue car is travelling at 50 m/s in front of the red car, which is
    11·1 answer
  • When you are high up in the air you<br> have<br> greater potential energy<br> less potential energy
    13·1 answer
  • What is one advantage of using electromagnets instead of permanent magnets
    7·2 answers
  • 5 What is the maximum speed at which a car round a curve of 25m radius on a level road if the coefficient of static friction bet
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!