Thermal energy is transforming, i think.
S = ut + 1/2 at^2
a = 3.2 m/s^2
s = 15m
Find t
15 = 1/2(3.2)t^2
15 = 3.2t^2/2
30 = 3.2t^2
30/ 3.2 = 9.38
Square root of 9.38 = 3.06
It takes 3.06 seconds
Answer:
The 10 kg rock has more inertia than the other two rocks.
Explanation
Answer:

Explanation:
We know,
..............(1)
where,
η = Efficiency of the engine
T₁ = Initial Temperature
T₂ = Final Temperature
Q₁ = Heat available initially
Q₂ = Heat after reaching the temperature T₂
Given:
η =0.280
T₁ = 3.50×10² °C = 350°C = 350+273 = 623K
Q₁ = 3.78 × 10³ J
Substituting the values in the equation (1) we get

or

or

⇒ 
Now,
The entropy change (
) is given as:

or

substituting the values in the above equation we get


The bouyancy force is:
Since the wood-lead system is completely submerged, the bouyancy force
is FB = ĎwgVl + ĎwgVb, where Ďw is the density of water,Vl
is the volume of
the piece of lead and Vb is the volume of the wooden block. The weight of the
combined lead and wooden block is: W = ĎlgVl + ĎbgVb. Since the system is
in equilibrium, the bouyancy force must be equal to the total weight:
ĎwgVl + ĎwgVb = ĎlgVl + ĎbgVb
now we can solve for the volume of lead:
ĎwgVl â’ ĎlgVl = ĎbgVb â’ ĎwgVb
Vl(Ďw â’ Ďl) = Vb(Ďb â’ Ďw)
Vl =
Ďbâ’Ďw
Ďwâ’Ďl
Vb
Now we substitute the values for the density of lead Ďl = 11.3 Ă— 103kg/m3 ,
the density of the wood and the density of water Ďw = 1000kg/m3
. We get:
Vl =
600â’1000
1000â’11300
(0.6m Ă— 0.25m Ă— 0.08m) = 4.66 Ă— 10â’4m3