1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
2 years ago
12

Halle la velocidad de las ondas de una cuerda de violin de 820 g/m y 22cm de longitud, si la frecuencia de la fundamental es de

920 hz. Calcule la tensión de la cuerda
Physics
1 answer:
Mice21 [21]2 years ago
7 0

Answer:

your mom B on thezz NUTZ

Explanation:

You might be interested in
Un cuerpo se lanza verticalmente hacia arriba con una velocidad de 13 m/s. ¿Cuánto tiempo tarda en alcanzar la altura máxima? a)
Elena L [17]

Answer:

D. 1.33 segundos.

Explanation:

El cuerpo es experimenta un movimiento en caída libre al modificarse su velocidad por efecto de la gravitación terrestre. Este cuerpo alcanza instantáneamente el reposo cuando se encuentra a su altura máxima, el tiempo puede obtenerse sabiendo la aceleración y las velocidades incial y final a partir de la siguiente ecuación cinemática:

v = v_{o}+g\cdot t

Donde:

v - Velocidad final del cuerpo, medida en metros por segundo.

v_{o} - Velocidad inicial del cuerpo, medida en metros por segundo.

g - Aceleración gravitacional, medida en metros por segundo al cuadrado.

t - Tiempo, medido en segundos.

Ahora se despeja el tiempo:

t = \frac{v-v_{o}}{g}

Si v_{o} = 13\,\frac{m}{s}, v=0\,\frac{m}{s} y g = -9.807\,\frac{m}{s^{2}}, entonces:

t = \frac{0\,\frac{m}{s}-13\,\frac{m}{s}}{-9.807\,\frac{m}{s^{2}} }

t = 1.326\,s

Por ende, la respuesta correcta es D.

6 0
3 years ago
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.6 m/s at ground level.
Dimas [21]

Answer:

The rocket is motion above the ground for 44.7 s.

Explanation:

The equations for the height of the rocket are as follows:

y = y0 + v0 · t + 1/2 · a · t²

and, after the engine fails:

y = y0 + v0 · t + 1/2 · g · t²

Where:

y = height of the rocket at time t

y0 =  initial height

v0 = initial speed

t=  time

a = acceleration due to the engines

g = acceleration due to gravity

First, let´s calculate the time the rocket is being accelerated by the engines:

(The center of the framer of reference is located at the ground, y0 = 0).

y = y0 + v0 · t + 1/2 · a · t²

1190 m = 0 m + 79.6 m/s · t + 1/2 · 4.10 m/s² · t²

0 = 2.05  m/s² · t² + 79.6 m/s · t - 1190 m

Solving the quadratic equation:

t = 11.5 s  (the other value of t is discarded because it is negative).

At that time, the engines fail and the rocket starts to fall. The equation of the height will be:

y = y0 + v0 · t + 1/2 · g · t²

The initial velocity (v0) will be the velocity acquired during 11.5 s of acceleration plus the initial velocity of launch:

v = v0 + a · t

v = 79.6 m/s + 4.10 m/s² · 11.5 s

v = 126.8 m/s

Now, we can calculate the time it takes the rocket to reach the ground (y = 0) from a height of 1190 m:

y = y0 + v0 · t + 1/2 · g · t²

0 m = 1190 m + 126.8 m/s · t - 1/2 · 9.80 m/s² · t²

Solving the quadratic equation:

t = 33.2 s

Then, the total time the rocket is in motion is (33.2 s + 11.5 s) 44.7 s

 

5 0
3 years ago
A ray of laser light travels through air and enters an unknown material. The laser enters the material at an angle of 36 degrees
V125BC [204]

Answer:1.27

Explanation:

Given

incident angle i=36^{\circ}

refracted angle r=27.5^{\circ}

Suppose n_2 is the refractive index of material then using Snell's law we  can write

n_1\sin i=n_2\sin r

where n_1=refractive index of air

1\times \sin (36)=n_2\times \sin (27.5)

n_2=\dfrac{0.5877}{0.4617}

n_2=1.27

3 0
3 years ago
Four equal masses m are so small they can be treated as points, and they are equally spaced along a long, stiff wire of neglible
anyanavicka [17]

Answer: 5m/L^2

Explanation:

Inertial I = mr^2 where r = distance from axis of rotation, while m is the mass of the object.

I = 2[m(1L/2)^2] + 2[m(3L/2)^2] = 2m×. 25/L^2+ 3m×2. 25/L^2= 0. 5m/l^2 +4. 5m/l^2

= 5m/l^2.

8 0
3 years ago
A force of F = (2.00ˆi + 3.00ˆj) N is applied to an object that is pivoted about a fixed axle aligned along the z coordinate axi
Vladimir [108]

Explanation:

It is given that,

Force applied to object, F=(2i+3j)\ N

Position, r=(4i+5j)\ m  

(b) The cross product of force and position vector is used to find the net torque about the z axis. It is given by :

\tau=F\times r

\tau=(2i+3j) \times (4i+5j)

\tau=\begin{pmatrix}0&0&-2\end{pmatrix}

or

\tau=(-2k)\ N-m

The torque is acting in -z axis.

(a) The magnitude of torque is given by :

|\tau|=\sqrt{(-2)^2}

|\tau|=2\ N-m

Hence, this is the required solution.

5 0
3 years ago
Other questions:
  • How much energy must be added to a bowl of 125 popcorn kernels in order for them to reach a popping temperature of 175°C? Assume
    14·1 answer
  • Which of the following statements about igneous rocks is correct?
    6·1 answer
  • Like the moon's orbit, Earth's orbit is not a perfect circle, but an oval How do you think this might affect Earth's tides?
    12·1 answer
  • A tree on a hillside casts a shadow 215 ft down the hill. If the angle of inclination of the hillside is 22???? to the horizonta
    14·1 answer
  • What is responsible for initiating a signal transduction pathway?
    14·1 answer
  • Please help! A net force of 2.0 N acts on a 2.0-kg object for 10 seconds. What is the object’s kinetic energy after that 10 seco
    9·1 answer
  • n an ecosystem, energy that flows to tertiary consumers ultimately originates from the sun. Please select the best answer from t
    14·2 answers
  • A train starts from rest. It acquires a speed of 25 m/s after
    5·1 answer
  • A bowling bowl is thrown off the top of a building. Determine distance the ball has fallen after falling for 3.0 s. Remember, th
    6·1 answer
  • What is an example of a reservoir?<br> 1. Beach<br> 2. Cloud<br> 3. Desert<br> 4. Lake
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!