A conducting material conducts or allows electricity to flow, while an insulator does not allow electricity to flow. For example think of a water pipe, if the pipe has a hole water can flow, on the other hand if it is just a solid rod, no water can flow through. I hope this helps.
Answer:10 km westExplanation:he go 40 east then 50 west 50-40 is 10 so he displaces 10 km and as west is more than east in terms of km so we will say that it's 10 km west pls mark as brainliest thanks
I would say B because it is near the ocean which can cause a tsunami but also because of the wind coming from the ocean (it might cause hurricanes and lots of storms) I’m not sure though but that’s what I think makes sense. Good Luck!
Answer:
1) t = 3.45 s, 2) x = 138 m, 3) v_{y} = -33.81 m /s, 4) v = 52.37 m / s
,
5) θ = -40.2º
Explanation:
This is a projectile exercise, as they indicate that the projectile rolls down the cliff, it goes with a horizontal speed when leaving the cliff, therefore the speed is v₀ₓ = 40 m / s.
1) Let's calculate the time that Taardaen reaches the bottom, we place the reference system at the bottom of the cliff
y = y₀ +
t - ½ g t²
When leaving the cliff the speed is horizontal v_{oy}= 0 and at the bottom of the cliff y = 0
0 = y₀ - ½ g t2
t = √ 2y₀ / g
t = √ (2 60 / 9.8)
t = 3.45 s
2) The horizontal distance traveled
x = v₀ₓ t
x = 40 3.45
x = 138 m
3) The vertical velocity at the point of impact
v_{y} = I go - g t
v_{y} = 0 - 9.8 3.45
v_{y} = -33.81 m /s
the negative sign indicates that the speed is down
4) the resulting velocity at this point
v = √ (vₓ² + v_{y}²)
v = √ (40² + 33.8²)
v = 52.37 m / s
5) angle of impact
tan θ = v_{y} / vx
θ = tan⁻¹ v_{y} / vx
θ = tan⁻¹ (-33.81 / 40)
θ = -40.2º
6) sin (-40.2) = -0.6455
7) tan (-40.2) = -0.845
8) when the projectile falls down the cliff, the horizontal speed remains constant and the vertical speed increases, therefore the resulting speed has a direction given by the angle that is measured clockwise from the x axis
<span>22.5 newtons.
First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as:
E = 0.5mv^2
where
E = Energy
m = mass
v = velocity
Substituting known values and solving gives:
E = 0.5 3.06 kg (7 m/s)^2
E = 1.53 kg 49 m^2/s^2
E = 74.97 kg*m^2/s^2
Now ignoring air resistance, how much energy should the rock have had?
We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So
3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2
So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is
299.88 J - 74.97 J = 224.91 J
So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division.
224.91 J / 10 m
= 224.91 kg*m^2/s^2 / 10 m
= 22.491 kg*m/s^2
= 22.491 N
Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>