1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
3 years ago
6

An unstrained horizontal spring has a length of 0.39 m and a spring constant of 350 N/m. Two small charged objects are attached

to this spring, one at each end. The charges on the objects have equal magnitudes. Because of these charges, the spring stretches by 0.022 m relative to its unstrained length. Determine (a) the possible algebraic signs and (b) the magnitude of the charges.
Physics
1 answer:
Vera_Pavlovna [14]3 years ago
6 0

Answer:

A) The possible algebraic signs will either be both positive (+) or both negative (-) charged since the 2 objects are repelling each other to stretch the string.

B) Magnitude of charges = 1.206 × 10^(-6) C

Explanation:

We are given;

Spring constant;k = 350 N/m

Spring length;L = 0.39 m

Stretched length of spring;x = 0.022 m

A) The spring stretches by 0.022m. Therefore, the total force is (350 × 0.022) N = 7.7N. The charged objects will either be both positive (+) or both negative (-) charged since they are repelling each other to stretch the string.

B) Force (F) required to stretch spring is given by the formula;

F = kx

Thus:

F = (350 × 0.022)

F = 7.7 N

Now, if we assume point charges, then the distance (r) between them will be given as:

r = (0.39 + 0.022) = 0.412 m

Coulomb's Law has a formula:

F = k(q1×q2)/r²

where k is coulomb's constant = 8.99 × 10^(9) Nm²/C²

Making q1 × q2 the subject, we have;

(q1 × q2) = Fr²/k = 7.7 × 0.412²/(8.99 × 10^(9))

(q1 × q2) = 14.54 × 10^(-11) C

We are told that both charges are equal, thus; |q1| = |q2|

So;

q = √(14.54 × 10^(-11)) = 1.206 × 10^(-6) C

You might be interested in
A body has masses of 0.013kg and 0.012kg in oil and water respectively, if the relative density of oil is 0.875, calculate the m
konstantin123 [22]

Answer:

the mass of the body is 0.02 kg.

Explanation:

Given;

relative density of the oil, \gamma _0 = 0.875

mass of the object in oil, M_o = 0.013 kg

mass of the object in water, M_w = 0.012 kg

let the mass of the object in air = M_a

weight of the oil, W_0 = M_a - 0.013

weight of the water, W_w = M_a - 0.012

The relative density of the oil is given as;

\gamma_0 = \frac{density \ of \ oil }{density \ of \ water} = \frac{W_0}{W_w} = \frac{M_a -0.013}{M_a -0.012} \\\\0.875 = \frac{M_a -0.013}{M_a -0.012}\\\\0.875(M_a - 0.012) = M_a - 0.013\\\\0.875M_a - 0.0105 = M_a -0.013\\\\0.875M_a - M_a = 0.0105 - 0.013\\\\-0.125 M_a = -0.0025\\\\M_a = \frac{0.0025}{0.125} \\\\M_a = 0.02 \ kg

Therefore, the mass of the body is 0.02 kg.

6 0
2 years ago
What is the speed of a horse in meters per second that runs a distance of 1.2 miles in 2.4 minutes​
Ilia_Sergeevich [38]
Time t=2.4 minutes=2.4×60=144 seconds
distance s=1.2 miles=1.2×1609=1930.8 meters
speed v=s/t=1930.8÷144=[tex] \frac{1930.8}{144} = \frac{160.9}{12} =[/13.408m/s ~nearly]
4 0
3 years ago
If your friend drops a chocolate bar to you from a height of 5.0 m above your hands,
Sladkaya [172]

Answer:

<h3>1.01 s</h3>

Explanation:

Using the equation of motion S = ut+1/2gt² to solve the problem where;

u is the initial velocity of the chocolate = 0m/s

t is the time taken

g is the acceleration due to gravity = 9.81m/s²

S is the height of fall = 5.0m

Substituting the given parameter into the formula to get the time t we have;

5 = 0(t)+1/2(9.81)t²

5 = 4.905t²

t² = 5/4.905

t² = 1.019

t = √1.019

t = 1.009 secs

<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>

6 0
3 years ago
A spinning turbine can generate electricity only in the form of a/an _______ current.
lukranit [14]

Answer:

A spinning turbine can generate electricity only in the form of an alternating current.

8 0
3 years ago
What is a rubens tube
Free_Kalibri [48]

Answer:

its an antique physics apparatus for demonstrating acoustic standing waves in a tube.

6 0
3 years ago
Other questions:
  • An 81.5-kg man stands on a horizontal surface.
    9·1 answer
  • How does light interact with the surface of a rough stone?
    7·1 answer
  • A toaster uses 400 W of power. How much does it use in 5 seconds?
    7·1 answer
  • A 14.0 m uniform ladder weighing 490 N rests against a frictionless wall. The ladder makes a 63.0°-angle with the horizontal.
    5·1 answer
  • Why will a sheet of paper fall slower than one that is crumbled into a ball
    6·2 answers
  • I really need help please just answer at least one
    13·1 answer
  • Describe the relationship between air time and range.
    14·1 answer
  • The blades of a fan running at low speed turn at 26.2 rad/s. When the fan is switched to high speed, the rotation rate increases
    7·2 answers
  • The thrust F of a screw propeller is known to depend upon the diameter d, Speed of advance v, fluid density e, revolution per se
    8·1 answer
  • Which statement is true about how early humans met their needs?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!