The two forms of oxygen, O2 and O3 is "<span>They have different molecular structures and different properties."</span>
Density is the mass of a substance per unit volume. Volume is the amount of space an object occupies. Chemical properties- These are properties that can only be observed by changing the identity of the substance
Hope it helped ya out!
Answer:
-88.66 kJ/mol
Explanation:
The expressions of heat capacity (Cp,m) for C(s) and for H₂(g) are:
C(s): Cp,m/(J K-1 mol-1) = 16.86 + (4.77T/10³) - (8.54x10⁵/T²)
H₂(g): Cp,m/(J K-1 mol-1) = 27.28 + (3.26T/10³) + (0.50x10⁵/T²)
Cp = A + BT + CT⁻²
For the Kirchoff's Law:
ΔHf = ΔH°f + 
Where ΔH°f is the enthalpy at 298 K, T1 is 298 K, T2 is the temperature given (373 K), and DCp is the variation of Cp (products less reactants). ΔH°f for ethene is -84.68 kJ/mol and the reaction is:
2C(s) + 3H₂(g) → C₂H₆
So, DCp:
dA = A(C₂H₆) - [2xA(C) + 3xA(H₂)] = 14.73 - [2x16.86 + 3x27.28] = -100.83
dB = B(C₂H₆) - [2xB(C) + 3xB(H₂)] = 0.1272 - [2x4.77x10⁻³ + 3x3.26x10⁻³] = 0.10788
dC = C(C₂H₆) - [2xC(C) + 3xC(H₂)] = 0 - (2x(-8.54x10⁵) + 3x0.50x10⁵) = 15.58x10⁵
dCp = -100.83 + 0.10788T + 15.58x10⁵T⁻²
= -3796.48 J/mol = -3.80 kJ/mol (solved by a graphic calculator)
ΔHf = -84.68 - 3.80
ΔHf = -88.66 kJ/mol
T₁ = 50,14 K.
p₁ = 258,9 torr.
T₂ = 161,2 K.
p₂ = 277,5 torr.
R = 8,314 J/K·mol.
Using Clausius-Clapeyron equation:
ln(p₁/p₂) = - ΔHvap/R · (1/T₁ - 1/T₂).
ln(258,9 torr/277,5 torr) = -ΔHvap/8,314 J/K·mol · (1/50,14 K - 1/161,2 K).
-0,069 = -ΔHvap/8,314 J/K·mol · (0,0199 1/K - 0,0062 1/K).
0,0137·ΔHvap = 0,573 J/mol.
ΔHvap = 41,82 J.
Answer: New concentration of
is 0.23 M.
Explanation:
The given data is as follows.
Moles of
= 0.06 mol
Moles of
= 0.08 mol
Therefore, moles of
added are as follows.
Moles of
= 
= 0.003125 mol
Now, new moles of
= 0.06 + 0.003125
= 0.063125
Therefore, new concentration of
will be calculated as follows.
Concentration = 
= 0.23 M
Thus, we can conclude that new concentration of
is 0.23 M.