The 10% rule means that approximately there will be only 10% energy transferred from a trophic level into another. That was because the consumer on the upper level will use the energy before it was consumed. About 90% of the energy used so only 10% remain will be transferred.
Example: an antler eating grass with a total 100 calories. Then the antler is moving and growing, using 90 calories. Then a lion eats the antler, but the energy remains is only 10 calorie because 90 calories are already used.
Answer:
not sure if this us right but oxygen and fluorine? I learned chem but I forgot about it kinda sorry
<span><span>1) Calculate the total number of nucleons (protons and neutrons) in the nuclide
<span>--> If the number of nucleons is even, there is a good chance it is stable.
</span></span><span><span>
2) Are there a magic number of protons or neutrons?
</span>--> 2,8,20,28,50,82,114 (protons), 126 (neutrons), 184 (neutrons) are particularly stable in nuclei.
</span><span>
3) Calculate the N/Z ratio.
<span>--> Use the belt of stability (Figure 1) to determine the best way to get from an unstable nucleus to a stable nucleus</span></span></span>
Answer:
See attachment.
Explanation:
Elements that are in the same group will definitely possess similar characteristics because they tend to have the same valence electron which determines their reactivity.
On a periodic table, elements in the same group can be found arranged on the same column in the periodic table.
Therefore the two elements that have similar characteristics are those two elements you can see on the same column in group 2. See the two elements indicated in the attachment below.
Answer:
The correct option is C.
Explanation:
Carbohydrates are one of the macro molecules that are consumed by living organisms. The end product of carbohydrate is glucose. Glucose is a very important fuel that the body cells used to produce energy, which they use to carry out their daily activities. Glucose is also known as blood sugar and it is the only fuel that living cells can use for the production of ATP. Other food macro molecules such as lipids and proteins can also be converted to glucose if there is a need for that. Glucose is always stored in the body in form of glycogen.
The statement given in option C about glucose is wrong because glucose is a monosaccharide and not a disaccharide.