An acid is deemed strong if it can readily or easy "donate" a proton (H+) to the other ions in the solutions. Also, to donate or lose the proton or H+, the acid must dissociate (split into ions) in the solution. The more it can readily dissociate, the stronger the acid is.
The mixture contains 62 % one isomer and 38 % the enantiomer.
Let’s say that the mixture contains 62 % of the (<em>R</em>)-isomer.
Then % (<em>S</em>) = 100 % -62 % = 38 %
ee = % (<em>R</em>) - % (<em>S</em>) = 62 % -38 % = 24 %
Answer:
35,000,000,000 mL
Explanation:
You first multiply 35 times 1000.
35,000 L
Now you multiply 35,000 times 10^6
35,000,000,000 mL
Chloride ions Cl –(aq) (from the dissolved sodium chloride) are discharged at the positive electrode as chlorine gas, Cl 2(g) sodium ions Na +(aq) (from the dissolved sodium chloride) and hydroxide ions OH –(aq) (from the water) stay behind - they form sodium hydroxide solution, NaOH(aq)
Balancing of chemical equation is essential because of the law of conservation of mass, which states that the mass of a system can not be created or removed.
The second equation is balanced
This is because the number of elements of each atom in the product side equal the number of elements of each atom on the reactant side.
The first equation is not balanced

This is because there is 1 molecule of
on reactant side as compared to 3 molecules of 
To balance the equation we add a coefficient of 3 on sulphuric acid (
) and a coefficient of 3 on hydrogen (
)
