If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.
Mass/volume is density so it’s 562g/72cm^3 so it’s roughly 7.805g per cubic centimeter
Because it is releasing heat from your body sweating and prespirating rlmelease heat so that you body will cool
A mixture that appears to contain only one substance is a. homogenous mixture.
Explanation:
In a vacuum (no air resistance), it doesn't. All falling objects, regardless of mass, accelerate at the same rate.
However, when air resistance is taken into account, heavier objects indeed fall faster than lighter objects, provided they have the same shape and size. For example, a lead ball falls faster than a styrofoam ball.
To understand why, first look at what factors affect air resistance:
D = ½ρv²CA
where ρ is air density,
v is velocity,
C is drag coefficient,
and A is cross sectional area.
As falling objects accelerate, they eventually reach a maximum velocity where air resistance equals weight. This is called terminal velocity.
D = W
½ρv²CA = mg
v = √(2mg/(ρCA))
If we increase m while holding everything else constant, v increases. So two objects with the same size and shape but different masses will have different terminal velocities, with the heavier object falling faster.