Answer:
1) f= 8.6 GHz
2) t= 0.2 ms
Explanation:
1)
- Since microwaves are electromagnetic waves, they move at the same speed as the light in vacuum, i.e. 3*10⁸ m/s.
- There exists a fixed relationship between the frequency (f) , the wavelength (λ) and the propagation speed in any wave, as follows:

- Replacing by the givens, and solving for f, we get:

⇒ f = 8.6 Ghz (with two significative figures)
2)
- Assuming that the microwaves travel at a constant speed in a straight line (behaving like rays) , we can apply the definition of average velocity, as follows:
where v= c= speed of light in vacuum = 3*10⁸ m/s
d= distance between mountaintops = 52 km = 52*10³ m

⇒ t = 0.2 ms (with two significative figures)
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
Answer:
Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
Explanation:
As we know that zinc reacts with copper sulfate
so the reaction is given as

so here we have




Now total mass of reactant is given as

Mass of the product is given as

Now since mass of reactant is equal to mass of the product after the reaction so we can say that mass conservation is applicable here
The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.
Answer:
The cup with 0.5L
Explanation:
To know what amount of water you take into account the specific heat of the water. The specific heat of water is:

Thus, 4186 J of energy are needed to icrease the temperature of 1 kg water in 1°C. Then, more grams of water will need more energy.
You have that one cup has 0.5 L and the other one has 750mL = 0.75L
The second cup of water will need more heat because the amount of water contained in the second cup is greater than in the first cup with 0.5L