1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
9

Which option distinguishes the step in the requirements engineering process described in the following scenario?

Engineering
2 answers:
boyakko [2]3 years ago
3 0

Answer:

b

Explanation:

Ivan3 years ago
3 0

Answer:

Write engineering requirements

Explanation:

Engineering requirements  - a detailed and measurable description of what a product should do to meet a customer need

Engineering requirements are a technical interpretation that put customer needs into measurable specifications and values such as; size, quantity, weight, and time.

And it is the denotive definition of the question

- massmaster34

You might be interested in
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage
ivolga24 [154]

Answer:

a. 46.15%

b. 261.73 kg/s

c. 54.79 kW/K

Explanation:

a. State 1

The parameters given are;

T₁ = 560°C

P₁ = 12 MPa = 120 bar

Therefore;

h₁ = 3507.41 kJ/kg,  s₁ = 6.6864 kJ/(kg·K)

State 2

p₂ = 1 MPa = 10 bar

s₂ = s₁ = 6.6864 kJ/(kg·K)

h₂ = (6.6864 - 6.6426)÷(6.6955 - 6.6426)×(2828.27 - 2803.52) + 2803.52

= (0.0438 ÷ 0.0529) × 24.75 = 2824.01 kJ/kg

State 3

p₃ = 6 kPa = 0.06 bar

s₃ = s₁ = 6.6864 kJ/(kg·K)

sg = 8.3291 kJ/(kg·K)

sf = 0.52087 kJ/(kg·K)

x = s₃/sfg = (6.6864- 0.52087)/(8.3291  - 0.52087) = 0.7896

(h₃ - 151.494)/2415.17 = 0.7896

∴ h₃ = 2058.56 kJ/kg

State 4

Saturated liquid state

p₄ = 0.06 bar= 6000 Pa, h₄ = 151.494 kJ/kg, s₄ = 0.52087 kJ/(kg·K)

State 5

Open feed-water heater

p₅ = p₂ =  1 MPa = 10 bar = 1000000 Pa

s₄ = s₅ = 0.52087 kJ/(kg·K)

h₅ = h₄ + work done by the pump on the saturated liquid

∴ h₅ = h₄ + v₄ × (p₅ - p₄)

h₅ = 151.494 + 0.00100645 × (1000000 - 6000)/1000 = 152.4944113 kJ/kg

Step 6

Saturated liquid state

p₆ = 1 MPa = 10 bar

h₆ = 762.683 kJ/kg

s₆ = 2.1384 kJ/(kg·K)

v₆ = 0.00112723 m³/kg

Step 7

p₇ = p₁ = 12 MPa = 120 bar

s₇ = s₆ = 2.1384 kJ/(kg·K)

h₇ = h₆ + v₆ × (p₇ - p₆)

h₇ = 762.683  + 0.00112723 * (12 - 1) * 1000 = 775.08253 kJ/kg

The fraction of flow extracted at the second stage, y, is given as follows

y = \dfrac{762.683 - 152.4944113 }{2824.01 - 152.4944113 } = 0.2284

The turbine control volume is given as follows;

\dfrac{\dot{W_t}}{\dot{m_{1}}} = \left (h_{1} - h_{2}  \right ) + \left (1 - y  \right )\left (h_{2} - h_{3}  \right )

= (3507.41  - 2824.01) + (1 - 0.22840)*(2824.01 - 2058.56) = 1274.02122 kJ/kg

For the pumps, we have;

\dfrac{\dot{W_p}}{\dot{m_{1}}} = \left (h_{7} - h_{6}  \right ) + \left (1 - y  \right )\left (h_{5} - h_{4}  \right )

= (775.08253 - 762.683) + (1 - 0.22840)*(152.4944113 -  151.494)

= 13.17 kJ/kg

For the working fluid that flows through the steam generator, we have;

\dfrac{\dot{Q_{in}}}{\dot{m_{1}}} = \left (h_{1} - h_{7}  \right )

= 3507.41 - 775.08253 = 2732.32747 kJ/kg

The thermal efficiency, η, is given as follows;

\eta = \dfrac{\dfrac{\dot{W_t}}{\dot{m_{1}}} -\dfrac{\dot{W_p}}{\dot{m_{1}}}}{\dfrac{\dot{Q_{in}}}{\dot{m_{1}}}}

η = (1274.02122 - 13.17)/2732.32747 = 0.4615 which is 46.15%

(762.683 - 152.4944113)/(2824.01 - 152.4944113)

b. The mass flow rate, \dot{m_{1}}, into the first turbine stage is given as follows;

\dot{m_{1}} = \dfrac{\dot{W_{cycle}}}{\dfrac{\dot{W_t}}{\dot{m_{1}}} -\dfrac{\dot{W_p}}{\dot{m_{1}}}}

\dot{m_{1}} = 330 *1000/(1274.02122 - 13.17) = 261.73 kg/s

c. From the entropy rate balance of the steady state form, we have;

\dot{\sigma }_{cv} = \sum_{e}^{}\dot{m}_{e}s_{e} - \sum_{i}^{}\dot{m}_{i}s_{i} = \dot{m}_{6}s_{6} - \dot{m}_{2}s_{2} - \dot{m}_{5}s_{5}

\dot{\sigma }_{cv} = \dot{m}_{6} \left [s_{6} - ys_{2} - (1 - y)s_{5}  \right ]

= 261.73 * (2.1384 - 0.2284*6.6864 - (1 - 0.2284)*0.52087 = 54.79 kW/K

4 0
3 years ago
MODIFIED-BOTTOM-UP-CUT-ROD(p, n, c) to return not only the value but the actual solution, too. Hint: It is similar to how array
Vaselesa [24]

Answer:

b.

Matrix chain multiplication

M[i,j] = M[i,k] + M[(k+1),j] + p[i-1]*p[k]*p[j] i<=k<j

p[] = {5,10,3,12,5,50}

M[0][0] = 0,M[1][1] = 0,M[2][2] = 0,M[3][3] = 0,M[4][4] = 0,M[5][5] = 0,

M[1][2] = M[1][1]+M[2][2]+p[0]*p[1]*p[2] = 0+0+5*10*3 = 150

M[2][3] = M[3][3]+M[2][2]+p[1]*p[2]*p[3] = 0+0+10*3*12 = 360

M[3][4] = M[3][3]+M[4][4]+p[2]*p[3]*p[4] = 0+0+3*12*5 = 180

M[4][5] = M[4][4]+M[5][5]+p[3]*p[4]*p[5] = 0+0+12*5*50 = 3000

M[1][3] = min{M[1][1]+M[2][3]+p[0]*p[1]*p[3] , M[1][2]+M[3][3]+p[0]*p[2]*p[3]}

= {0 + 360 + 600 , 150+0+180} = {960,330} = 330

M[2][4] = min{M[2][2]+M[3][4]+p[1]*p[2]*p[4] , M[2][3]+M[4][4]+p[1]*p[3]*p[4]}

= {0 + 180 + 150 , 360+0+600} = {960,330} = 330

M[3][5] = min{M[3][3]+M[4][5]+p[2]*p[3]*p[5] , M[3][4]+M[5][5]+p[2]*p[4]*p[5]}

= {0 + 3000 + 1800 , 180+0+750} = {4800,930} = 930

M[1][4] = min{M[1][1] + M[2][4] +p[0]*p[1]*p[4] ,M[1][2] + M[3][4] +p[0]*p[2]*p[4] ,

M[1][3] + M[4][4] +p[0]*p[3]*p[4]}

{0+330+250 , 150+180+75 , 330+0+300} = 405

M[2][5] = min{M[2][2] + M[3][5] +p[1]*p[2]*p[5] ,M[2][3] + M[4][5] +p[1]*p[3]*p[5] ,

M[2][4] + M[5][5] +p[1]*p[4]*p[5]}

{0+930+1500 , 360+3000+6000,330+0+2500} = 2430

M[1][5] = min{M[1][1] +M[2][5]+p[0]*p[1]*p[5] , M[1][2] +M[3][5]+p[0]*p[2]*p[5],

M[1][3] +M[4][5]+p[0]*p[3]*p[5] , M[1][4] +M[5][5]+p[0]*p[4]*p[5]}

{0+2430+2500 , 150+930+750 , 330+3000+3000 , 405+0+1250} = 1655

(a)

MemoizedCutRod(p, n)

r: array(0..n) := (0 => 0, others =>MinInt)

return MemoizedCutRodAux(p, n, r)

MemoizedCutRodAux(p, n, r)

if r(n) = 0 and then n /= 0 then -- check if need to calculate a new solution

q: int := MinInt

for i in 1 .. n loop

q := max(q, p(i) + MemoizedCutRodAux(p, n-i, r))

end loop

end if

r(n) := q

end if

return r(n)

8 0
3 years ago
Please view the file attached below and help me answer all the questions!!
evablogger [386]

Answe whats the question i can help you

Explanation:

8 0
3 years ago
A binary star system consists of two stars of masses m1m1m_1 and m2m2m_2. The stars, which gravitationally attract each other, r
d1i1m1o1n [39]

Answer:

          a_c_2=\dfrac{a_c_1\times m_1}{m_2}

Explanation:

The question is: <em>Find the magnitude of the centripetal acceleration of the star with mass m₂</em>

The <em>centripetal acceleration</em> is the quotient of the centripetal force and the mass.

                a_c=\dfrac{F_c}{m}

Thus, you can write the equations for each star:

     

       a_c_1=\dfrac{F_c_1}{m_1}

       a_c_2=\dfrac{F_c_2}{m_2}

As per Newton's third law, the centripetal forces are equal in magnitude. Then:

       a_c_1\times m_1=a_c_2\times m_2

Now you can clear a_c_2:

          a_c_2=\dfrac{a_c_1\times m_1}{m_2}

6 0
4 years ago
KVL holds for the supermesh, so we can write a KVL equation to generate the second equation we need to solve for the two unknown
kaheart [24]

Answer:

The values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA while that of V_Δ is -25 V

Explanation:

As the complete question is not given the complete question is found online and is attached herewith.

By applying KCL at node 1

i_x+50mA=i_y\\i_x-i_y=0.05A

Also

V_{\Delta}=1K*i_y

Now applying KVL on loop 1 as indicated in the attached figure

1K*i_y+5K(i_y-i_z)+3K*i_x=0\\3i_x+6 i_y-5i_z=0

Similarly for loop 2

2V_{\Delta}+5K(i_z-i_y)=0\\2*1K*i_y+5K(i_z-i_y)=0\\2K*i_y+5K(i_z-i_y)=0\\3i_y-5i_z=0

So the system of equations become

i_x-i_y+0i_z=0.05\\3i_x+6i_y-5i_z=0\\0i_x-3i_y+5i_z=0

Solving these give the values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA. Also the value of voltage is given as

V_{\Delta}=1K*i_y\\V_{\Delta}=1K*-25 mA\\V_{\Delta}=-25 V

The values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA while that of V_Δ is -25 V

8 0
4 years ago
Other questions:
  • Tech A says that low compression on a single cylinder will cause an engine not to start. Tech B says that low compression on a s
    7·1 answer
  • g A pedometer treats walking 2,000 steps as walking 1 mile. Write a program whose input is the number of steps, and whose output
    10·2 answers
  • How to get on your screen on 2k20 in every mode
    15·2 answers
  • The iron-blade plow allowed humans to increase food production during<br> what age?
    8·1 answer
  • A displacement transducer has the following specifications Linearity error ±0.1% of reading, Drift ±0.15%/C of reading, sensitiv
    8·1 answer
  • i know this isnt suppose to be here or any of that but this needs to be stop any where...ok now that i have your attention every
    14·2 answers
  • The wheel and axle is a special type of:<br><br> inclined plane<br> wedge<br> lever<br> screw
    14·2 answers
  • On the attached image, #7.31. A is a pin
    8·1 answer
  • What type of Exhaust is best for the 3.9 Mopar V6 Engine in Dodge Dakota?
    11·1 answer
  • 1. a major reason for the projected shortage of trained craft professionals is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!