1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
3 years ago
11

A 1 m wide continuous footing is designed to support an axial column load of 250 kN per meter of wall length. The footing is pla

ced 0.5 m into a soil with a cohesion of 25 kPa and an angle of internal friction of 5°. Most nearly, what is the value of the Terzaghi bearing capacity factor, N?(A) 0.5(B) 1.1(C) 1.6(D) 7.3
Engineering
1 answer:
creativ13 [48]3 years ago
7 0

Answer:

correct option is (A) 0.5

Explanation:

given data

axial column load = 250 kN per meter

footing placed =  0.5 m

cohesion = 25 kPa

internal friction angle =  5°

solution

we know angle of internal friction is 5° that is near to 0°

so it means the soil is almost cohesive soil.

and for  a pure cohesive soil

N_{\gamma } = 0

and we know formula for N_{\gamma } is

N_{\gamma } = (Nq - 1 ) × tan(Ф)   ..................1

so here Ф is very less  N_{\gamma } should be nearest to zero

and its value can be 0.5

so correct option is (A) 0.5

You might be interested in
A sample of soil has a volume of 0.45 ft^3 and a weight of 53.3 lb. After being dried inan oven, it has a weight of 45.1 lb. It
topjm [15]

Answer:

a) the moisture content before it was placed in the oven is 18.18%

b) degree of saturation for soil is 72.19%

Explanation:

Given the data in the question;

Moisture Content = [(Weight of soil before dry - dry weight) / dry weight] × 100

so we substitute

Moisture content = [(53.3 - 45.1) / 45.1 ] × 100

= (8.2/45.1) × 100

= 18.18%

Therefore the moisture content before it was placed in the oven is 18.18%

Dry Unit Weight = dry weight / volume

Dry Unit Weight = 45.1 lb / 0.45 ft³

Dry Unit Weight = 100.22 lb/ft³

we know that;

dry unit weight = (Specific gravity × unit weight of water) / (1 + e)

we also know that; unit weight of water is 62.43 lbf/ft³

so we substitute

e = (2.70×62.43 / 100.22) - 1

e = 1.68 - 1

e = 0.68

so void ratio e = 0.68

Now we determine the degree of saturation using the equation;

degree of saturation = (Moisture content × specific gravity) / void ratio

we substitute

degree of saturation = ( 18.18% × 2.7) / 0.68

= 0.49086 / 0.68

= 0.7219 ≈ 72.19%

Therefore degree of saturation for soil is 72.19%

7 0
3 years ago
The temperature of an electric welding arc is about?
N76 [4]

Answer:

The heat of the arc melts the surface of the base metal and the end of the electrode. The electric arc has a temperature that ranges from 3,000 to 20,000 °C

Explanation:

Welding fumes are complex mixtures of particles and ionized gases.

7 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
A new 1.2-ha suburban residential development is to be drained by a storm sewer that connects to the municipal drainage system.
valentinak56 [21]

Answer:

Time of concentration, t_d ⇒ 1280 min

Peak runoff rate, Q_p ⇒4.185 ff³/s

Explanation:

See detailed explanation

6 0
3 years ago
The Energy Losses Associated with Valves and Fittings: a)- are generally associated with a K factor b)- are generally associated
madam [21]

Answer:

a)Are generally associated with factor.

Explanation:

We know that losses are two types

1.Major loss  :Due to friction of pipe surface

2.Minor loss  :Due to change in the direction of flow

As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and  it produce losses in the energy.

Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

Losses=K\dfrac{V^2}{2g}

8 0
3 years ago
Other questions:
  • Air as an ideal gas in a closed system undergoes a reversible process between temperatures of 1000 K and 400 K. The beginning pr
    9·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • What are the equipment requirements for windshields and side windows?
    13·1 answer
  • For the system form of the basic laws, the momentum of a system can change as a result of: a. pressure acting on the system. b.
    14·2 answers
  • A 300-ft long section of a steam pipe with an outside diameter of 4 in passes through an open space at 50oF. The average tempera
    12·1 answer
  • Refrigerant-134a enters an adiabatic compressor at -30oC as a saturated vapor at a rate of 0.45 m3 /min and leaves at 900 kPa an
    13·1 answer
  • True or false the camshaft is always located in the engine block
    10·1 answer
  • Some_____
    10·1 answer
  • The design-bid-build model is prons to abuse because separation of phases facilitates the hiding of corrupt practices.
    7·2 answers
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!