This question is not complete, the complete question is;
The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005
Answer:
the length of the pipe is 11583 in or 965.25 ft
Explanation:
Given the data in the question;
Static pressure ratio; p1/p2 = 10
friction coefficient f = 0.005
diameter of pipe, D =4 inch
first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so
4fL
/ D = 57.915
we substitute
(4×0.005×L
) / 4 = 57.915
0.005L
= 57.915
L
= 57.915 / 0.005
L
= 11583 in
Therefore, the length of the pipe is 11583 in or 965.25 ft
Answer:
A=16+j12…'B=6+j10.4
Explanation:
add the following vector given in
Most minerals can be characterized and classified by their unique physical properties: hardness, luster, color, streak, specific gravity, cleavage, fracture, and tenacity.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em><em>✌</em>
Answer:
189.15cy
Explanation:
To understand this problem we need to understand as well the form.
It is clear that there is four wall, two short and two long.
The two long are 
The two long are 
The two shors are 
The height and the thickness are 14ft and 0.83ft respectively.
So we only calculate the Quantity of concrete,
![Q_c = [(2*122.08)+(2*86-375)]*14*0.833\\Q_c=4864.02ft^3](https://tex.z-dn.net/?f=Q_c%20%3D%20%5B%282%2A122.08%29%2B%282%2A86-375%29%5D%2A14%2A0.833%5C%5CQ_c%3D4864.02ft%5E3)
That in cubic yards is equal to 
Hence, we need order 5% plus that represent with the quantity

Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift