1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Trava [24]
3 years ago
9

What does -$20 -$15 +$30 $2 Equal

Mathematics
1 answer:
ad-work [718]3 years ago
4 0

Answer:

-3

Step-by-step explanation:

-20-15+30+2

-35+32

-3

You might be interested in
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Factor. z^2 -6z -16 simplify
leva [86]
(z-8) (z+2) 
What I do to factor is find _x_=-16 and _+_=-6. -8x2=-16 and -8+2=-16. The coordinates for z if you were to graph this would be (8,0) and (-2,0) 
3 0
3 years ago
8.0464x10^-7 = <br> answer in decimal notation
Charra [1.4K]
To convert 8.0464x10^-7 from scientific notation to decimal notation, you need to move the decimal point to the left seven times.
Therefore the answer is:

0.00000080464

Note: 10^-7 equals 1/10^7
8.0464x10^-7 can be rewritten as:
8.0464/10^7 (i.e. divide 8.0464 by 10000000)
which results: 0.00000080464
6 0
3 years ago
If a and b are two angles in standard position in Quadrant I, find cos(a+b) for the given function values. sin a=4/5 and cos b=5
vladimir1956 [14]
First let's find the angles a and b.

 We have then:
 sin a = 4/5
 a = Asin (4/5)
 a = 53.13 degrees.

 cos b = 5/13
 b = Acos5 / 13
 b = 67.38 degrees.

 We now calculate cos (a + b). To do this, we replace the previously found values:
 cos ((53.13) + (67.38)) = - 0.507688738
 Answer: 
 -0.507688738
 Note: there is another way to solve the problem using trigonometric identities.
4 0
3 years ago
Read 2 more answers
If a linear function contains the pairs (5,7) and (9,11), which pairs should have the reciprocal function to this one?
OLga [1]

The new coordinates will be ( 7,5) and (11,9) , Option A is the correct answer.

<h3>What is a Reciprocal Function ?</h3>

The reciprocal function is the inverse of the function, such that 1/ f(x) is the reciprocal of f(x).

The given linear function has pairs of points

(5,7) and (9,11)

The reciprocal of this will be

interchanging of the coordinates

Therefore the new coordinates will be

( 7,5) and (11,9)

Option A is the correct answer.

To know more about Reciprocal Function

brainly.com/question/12621604

#SPJ1

8 0
2 years ago
Other questions:
  • Refer to the graphic novel frame below. Write and solve an equation to find how many movies they have time to show.
    5·1 answer
  • Order the integers {-10, -25, 25, 10, -50} from least to greatest.
    5·2 answers
  • Let X and Y be joint continuous random variables with joint density function fpx, yq " # e ´y y 0 ă x ă y, 0 ă y ă 8 0 otherwise
    6·1 answer
  • A. 4 miles is equal to how many kilometer. B. 45 pound is equal to how many kilogram?​
    6·1 answer
  • What is the slope of the line ?
    14·1 answer
  • The radius of a circular table is 2 feet. What is the area of the table? Use 3.14
    13·2 answers
  • The gestation period of humans ​(266 days) is​ _____ percent longer than the gestation period of lions (108 days).
    6·1 answer
  • HELPPPP PLEASEEEEEEEREEREEEE
    9·1 answer
  • How do I solve this?
    6·1 answer
  • If a car traveled 110.5 miles in two hours, how far did it travel in one hour?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!