During a car crash, energy is transferred from the vehicle to whatever it hits, be it another vehicle or a stationary object. ... The object that was struck will either absorb the energy thrust upon it or possibly transfer that energy back to the vehicle that struck it.
I HOPE THIS HELPSS???
Mark me brainliest
Answer:
a cold air mass and a warm air mass merge together
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Correct Answers is A.
The machines gives us some mechanical advantage. This means the mechanical average makes the work output greater than the work input
Simple most example is a lever. The force applied is smaller and the output work is larger as compared to input.
Option B cannot be true, as there must be a force to get some work done.
Option C and D are inverse of what a machine is designed for. A small force can be exerted through a large distance to have a large force exerted through a small distance. Common Example of this principle is a screw opener.