Answer:
The value of acceleration due to gravity is independent of mass of the body.
Explanation:
Let us consider the mass of the object as m and mass of earth as M
Therefore, force between the object and earth would be given by: F = GMm/d²
This force is equal to the weight of the object, i.e. mg
Thus;
mg = GMm/d²
g = GM/d²
Therefore, the value of acceleration due to gravity is independent of mass of the body.
Power delivered = (energy delivered) / (time to deliver the energy)
Power delivered = (4,000 J) / (0.5 sec)
Power delivered = 8,000 watts
I'm a little surprised to learn that Electro draws his power from the mains. This is VERY good news for Spiderman ! It means that Spiderman can always avoid tangling with Electro ... all he has to do is stay farther away from Electro than the length of Electro's extension cord.
But OK. Let's assume that Electro draws it all from the mains. Then inevitably, there must be some loss in Electro's conversion process, between the outlet and his fingertips (or wherever he shoots his bolts from).
The efficiency of Electro's internal process is
<em>(power he shoots out) / (power he draws from the mains) </em>.
So, if he delivers energy toward his target at the rate of 8,000 watts, he must draw power from the mains at the rate of
<em>(8,000 watts) / (his internal efficiency) . </em>
Students were asked to place a mint in their mouths and determine how long it took for the mint to dissolve. The condition of the mint varied in each student group. One group of students were asked to leave a whole mint in their mouth, not moving it around, and let it dissolve. Another group swirled a mint, while the other groups used mints broken into smaller pieces. See the chart for all of the manipulated variable. After reviewing that data table, what kind of result would you predict for the swirled, whole mint?
A) The time is likely between 10-30 seconds.
B) The time is likely between 40-80 seconds.
C) The time is likely between 90-160 seconds.
D) The time is likely between 100-200 seconds.
ANSWER: B) The time is likely between 40-80 seconds.
EXPLANATION:The time is likely between 40-80 seconds.
By swirling the mint, this is agitating and creating a higher frequency of collisions between the saliva particles and mint particles, increasing the rate of dissolution. Therefore, the time is likely to be less than the mint cut in half but probably more than the mint when it is in small pieces.
Explanation:
Below is an attachment containing the solution.