Answer:
True
True statement:
Because pigment molecules absorb solar energy and thylakoids are pigment molecules
I know that protons and neutrons are located at the center of an atom, so the correct answer is D
Answer:
<em>Because </em><em>of </em><em>the </em><em>given </em><em>stranded</em><em> </em><em>wires </em><em>is </em><em>that </em><em>it's </em><em>thinner </em><em>there </em><em>are </em><em>even </em><em>more </em><em>air </em><em>gaps </em><em>and </em><em>a </em><em>greater </em><em>surface</em><em> </em><em>area </em><em>in </em><em>the </em><em>individual</em><em> </em><em>stranded</em><em> wires</em><em> </em><em>then </em><em>therefore </em><em>it </em><em>carries </em><em>less </em><em>current </em><em>than </em><em>similar </em><em>solid </em><em>wires </em><em>can </em><em>with</em><em> </em><em>each</em><em> </em><em>type </em><em>of </em><em>wire </em><em>,</em><em> insulations</em><em> </em><em>technologies </em><em>can </em><em>greatly</em><em> </em><em>assist </em><em> </em><em>in </em><em>reducing</em><em> </em><em>power </em><em>dissipation</em><em>.</em>
Answer:
the answer the correct one is c
Explanation:
Electric charges of different signs attract and those of the same sign repel. In addition, there are two types of insulating bodies, where the loads are fixed (immobile) and metallic (with mobile loads.
Let's analyze the situation presented
* A rod with positive approaches and the sphere is attracted, so the charge on the sphere is negative
* A rod with a negative charge approaches and the sphere is attracted, therefore the charge of the sphere must be positive.
For this to happen, the sphere must be unloaded and the charge that creates the phenomenon are induced charges because the mobile charges of the same sign as the sphere are repelled.
when checking the answer the correct one is c
Refer to the diagram shown below.
μ = the coefficient of dynamic friction between the crate and the ramp.
1. The applied force of F acts over a distance, d.
The work done is F*d.
2. The component of the weight of the crate acting down the ramp is
mg sin(30) = 0.5mg.
The work done by this force is 0.5mgd.
3. The normal force is N = mgcos(30) = 0.866mg.
This force is perpendicular to the ramp, therefore the work done is zero.
4. The frictional force is μN = μmgcos(30) = 0.866μmg.
The work done by the frictional force is 0.866μmgd.
5. The total force acting on the crate up the ramp is
F - mgsin(30) - μmgcos(30) = F - mg(0.5 - 0.866μ)
6. The work done on the crate by the total force is
d*(F - 0.5mg - 0.866μmg)