Of the gravitational pull and other things like mass. Planet earth it,s self as you said sir.
Answer:
From the negative to the positive cable.
Explanation:
The electrons have negative charge, which means that the negative terminal of the battery will suply the electrons, thus they are present in excess on the negative cable and will jump from it to the positive cable. This current direction is called real current.
Answer:
1. increases
2. increases
3. increases
Explanation:
Part 1:
First of all, since the box remains at rest, the horizontal net force acting on the box must equal zero:
F1 - fs = 0.
And this friction force fs is:
fs = Nμs,
where μs is the static coefficient of friction, and N is the normal force.
Originally, the normal force N is equal to mg, where m is the mass of the box, and g is the constant of gravity. Now, there is an additional force F2 acting downward on the box, which means it increases the normal force, since the normal force by Newton's third law, is the force due to the surface acting on the box upward:
N = mg + F2.
So, F2 is increasing, that means fs is increasing too.
Part 2:
As explained in the part 1, N = mg + F2. F2 is increasing, so the normal force is thus increasing.
Part 3:
In part 1 and part 2, we know that fs = Nμs, and since the normal force N is increasing, the maximum possible static friction force fs, max is also increasing.
Answer:
the answer is B: earth takes to rotate once on its axis
Answer:
x = 41.28 m
Explanation:
This is a projectile launching exercise, let's find the time it takes to get to the base of the cliff.
Let's start by using trigonometry to find the initial velocity
cos 25 = v₀ₓ / v₀
sin 25 = Iv_{oy} / v₀
v₀ₓ = v₀ cos 25
v_{oy} = v₀ sin 25
v₀ₓ = 22 cos 25 = 19.94 m / s
v_{oy} = 22 sin 25 = 0.0192 m / s
let's use movement on the vertical axis
y = y₀ + v_{oy} t - ½ g t²
when reaching the base of the cliff y = 0 and the initial height is y₀ = 21 m
0 = 21 + 0.0192 t - ½ 9.81 t²
4.905 t² - 0.0192 t - 21 = 0
t² - 0.003914 t - 4.2813 =0
we solve the quadratic equation
t =
t =
t₁ = 2.07 s
t₂ = -2.067 s
since time must be a positive scalar quantity, the correct result is
t = 2.07 s
now we can look up the distance traveled
x = v₀ₓ t
x = 19.94 2.07
x = 41.28 m