Answer:
Frequency = 3 Hz
Explanation:
Frequency is a measure of Hertz. Recall that Hertz is the unit expressing cycles/second, where one second is the denominator of the fraction for simplicity. If there are 12 waves every four seconds, and one wave represents one cycle, dividing 12 waves by 4 seconds will give the answer of 3 waves (or cycles) per one second.
as per the question charlie runs to the store which is 4 km away
hence the total distance covered [S] is 4 km
he takes 30 minutes to reach the store.
hence the total time taken [t] = 30 minutes=0.5 hour
We have to calculate the average speed.
the average speed[v]= 
=
=8 km/hour
then we have to calculate the total distance traveled by charlie in 1 hour.
the distance covered S= 
=8 km/hour ×1 hour
=8 km
Hence the average speed of charlie is 8 km/hour and he covers a distance of 8 km in 1 hour.
Answer:
1) joule
2) 
3) 
Explanation:
1) Luminosity is the <u>amount of light emitted</u> (measured in Joule) by an object in a unit of<u> time</u> (measured in seconds). Hence in SI units luminosity is expressed as joules per second (
), which is equal to Watts (
).
This amount of light emitted is also called radiated electromagnetic power, and when this is measured in relation with time, the result is also called radiant power emitted by a light-emitting object.
Therefore, if we want to calculate luminosity the Joule as a unit will be used.
2) Work
is expressed as force
multiplied by the distane
:
Where force has units of
and distance units of
.
If we input the units we will have:
This is 1Joule (
) in the SI system, which is also equal to 
3) The formula to calculate the percent error is:

Where:
is the experimental value
is the accepted value

This is the percent error
I’m sure it’s called a circuit:)
The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4