Answer: The statement "The charge cannot be created or destroyed describes the principle of the conservation of charge".
Explanation:
According to the conservation of charge, the charge can neither be created nor destroyed. It can be transferred from one system to another.
In an isolated system, the total electric charge remains constant. The net quantity of electric charge is always conserved in the universe.
Therefore, "the charge cannot be created or destroyed" describes the principle of the conservation of charge.
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft
To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4
Answer:
a) 
b) 
Explanation:
Given:
String vibrates transversely fourth dynamic, thus n = 4
mass of the string, m = 13.7 g = 13.7 × 10⁻¹³ kg
Tension in the string, T = 8.39 N
Length of the string, L = 1.87 m
a) we know

where,
= wavelength
on substituting the values, we get

or

b) Speed of the wave (v) in the string is given as:

also,

equating both the formula for 'v' we get,

on substituting the values, we get

or

or

On an electromagnetic spectrum, one of its noticeable trends is that the wavelength increases with decreasing energy and the wavelength decrease with increasing energy. Furthermore, gamma rays have high energy and short wavelengths while microwaves have low energy and long wavelengths.