1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
3 years ago
8

If the speed at which an object moves through a fluid increases, will the size of the frictional force that acts on it increase,

decrease or stay the same?
Physics
1 answer:
Alla [95]3 years ago
5 0

Answer:

increase

Explanation:

You might be interested in
The battery charger for an mp3 player contains a step-down transformer with a turns ratio of 1:38, so that the voltage of 120 v
matrenka [14]
Transformer contains two coils: primary and secondary. They allow change of voltage to lower or higher value. In first case we have step-down and in second case we have step-up transformer.
Formula used for transformer is:\frac{N_{1} }{N_{2}} = \frac{V_{1}}{V_{2}}

Where:N1 = number of turns on primary coilN2 = number of turns on secondary coilV1 = voltage on primary coilV2 = voltage on secondary coil
In a step-down transformer primary coil has more turns than secondary coil. So the ratio 1:38 means that for each turn on secondary coil we have 38 turns on primary coil.
We can solve the equation for V2:V_{2} =  \frac{ V_{1}* N_{2}  }{ N_{1} }  \\  V_{2} =  \frac{ 120* x  }{ 38x} } \\ V_{2} = 3.16V

Secondary coil provides voltage of 3.16V.
7 0
3 years ago
A plane flies 1800 miles in 9 ​hours, with a tailwind all the way. the return trip on the same​ route, now with a​ headwind, tak
Fittoniya [83]

Initially its moving with tail wind so here the speed of wind will support the motion of the plane

so we can say

V_{plane} + v_{wind} = \frac{distance}{time}

V_{plane} + v_{wind} = \frac{1800}{9}

V_{plane} + v_{wind} = 200 mph

now when its moving with head wind we can say that wind is opposite to the motion of the plane

V_{plane} - v_{wind} = \frac{distance}{time}

V_{plane} - v_{wind} = \frac{1800}{12}

V_{plane} - v_{wind} = 150mph

now by using above two equations we can find speed of palne as well as speed of wind

V_{plane} = 175 mph

v_{wind} = 25 mph

5 0
3 years ago
PLEASE HELP
GREYUIT [131]

Answer:

h = 1.8 m

Explanation:

The initial velocity of the glove, u =- 6 m/s

We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0

v^2-u^2=2ah, h is the maximum height and a = -g

0^2-(6)^2=2\times (-10)\times h\\\\h=\dfrac{36}{20}\\\\h=1.8\ m

Hence, it will go up to a height of 1.8 m.

4 0
3 years ago
A ball is kicked from the top of a building with a velocity of 50 m/s and lands 165 m away from the base of the buildi
solniwko [45]

Answer:

32.3 m/s

Explanation:

The ball follows a projectile motion, where:

- The horizontal motion is a uniform motion at costant speed

- The vertical motion is a free fall motion (constant acceleration)

We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

v_x = 50 m/s

and it covers a distance of

d = 165 m

So, the total time of flight of the ball is

t=\frac{d}{v_x}=\frac{165}{50}=3.3 s

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.

The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

v_y = u_y +at

where

v_y is the vertical velocity at time t

u_y=0 is the initial vertical velocity

a=g=9.8 m/s^2 is the acceleration  of gravity (taking downward as positive direction)

Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball:

v=0 + (9.8)(3.3)=32.3 m/s

5 0
3 years ago
A wire with resistance R is connected to the terminals of a 6.0 V battery. What is the potential difference between the ends of
Bas_tet [7]

Answer:

Potential difference = 6.0 V

I for 1.0Ω = 6 A

I for 2.0Ω = 3 A

I for 3.0Ω = 2 A

Explanation:

Potential difference (ΔV) = Current (I) x Resistance (R)

The potential difference is constant and equals 6.0 V, hence;

I = ΔV/R

When R = 1.0, I =6/1 = 6 amperes

When R = 2.0, I = 6/2 = 3 amperes

When R = 3.0, I = 6/3 = 2 amperes

<em>The potential difference is 6.0 V and the current is 6, 3, and 2 amperes for a resistance of 1.0, 2.0 and 3.0Ω respectively.</em>

7 0
3 years ago
Other questions:
  • A 2,000 kg car is parked at the top of a 30 m high hill. What is its potential
    5·1 answer
  • A converging lens brings rays of light together at a focal point. The bending of light rays is the result ofA. A combination of
    8·1 answer
  • A 50 g mass hanger hangs motionless from a partially stretched spring. When a 80 gram mass is added to the hanger, the spring st
    10·1 answer
  • Measuring the Orbital Speeds of Planets
    6·1 answer
  • When you normally drive the freeway between Sacramento and San Francisco at an average speed of 115 km/hr (71 mi/h ), the trip t
    14·1 answer
  • Can anyone please answer both of these questions?
    9·1 answer
  • what happens when light travels from one medium to another with a different index of refraction at a zero degree angle of incide
    9·2 answers
  • Air pressure decreases as
    13·2 answers
  • a person goes to his friends home at the speed of 30 km/h and comes back at the speed of 40 km/h. what was his average speed thr
    8·1 answer
  • URGENT!!!!!!!<br><br> PLEASE HELP WITH THIS PHYSICS PROBLEM
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!