Answer:
Explanation:
Given
Height of ceiling is 
Initial speed of Putty 
Speed of Putty just before it strike the ceiling is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement



time taken by putty to reach the ceiling




Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases




Answer:

Work done = = 5 kJ
Explanation:
Given data:
volume of nitrogen 



Polytropic exponent n = 1.4
![\frac{T_2}{T_1} = [\frac{P_2}{P_1}]^{\frac{n-1}{n}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7BT_1%7D%20%3D%20%5B%5Cfrac%7BP_2%7D%7BP_1%7D%5D%5E%7B%5Cfrac%7Bn-1%7D%7Bn%7D)
putting all value
![\frac{T_2}{473} = [\frac{80}{150}]^{\frac{1.4-1}{1.4}](https://tex.z-dn.net/?f=%5Cfrac%7BT_2%7D%7B473%7D%20%3D%20%5B%5Cfrac%7B80%7D%7B150%7D%5D%5E%7B%5Cfrac%7B1.4-1%7D%7B1.4%7D)

polytropic process is given as



work done 

= 5 kJ
Hello!
We can use the kinematic equation:

a = acceleration (m/s²)
vf = final velocity (45 m/s)
vi = initial velocity (25 m/s)
t = time (5 sec)
Plug in the givens:
