Answer:
Instantaneous speed means speed at any instant
that means Speed is changing with time
You know speed is distance/time
So that means distance is also changing with time
So we take infinitesimal small distance per infinitesimal small time As we assume speed is constant in infinitesimal small time dt
So, we take speed = ds/dt
ds = infinitesimal small distance
dt = infinitesimal small time
As its ratio is equal to speed at any instant
Note : We are taking infinitesimal small distance
But :) we are taking infinitesimal small time also
As you know if denominator is small fraction is large So fraction always give large value
So it's not O ( this makes confuse to most of students)
So, thanks
Good question
Keep thinking like this :)
The molar mass of the sample is equal to the summation of the molar mass of the elementas multiplied by the abundance of the elements by mole. In this case, copper has an abundance of 93.69 percent while zinc has 6.31 percent. In this case, the average molecular weight is 63.67 g/mol
i recommend Biography of Malala Yousafzai
I have learned her biography
that really motivated me
Answer:
F = 37.8 × 10^(6) N
Explanation:
The charges are 0.06 C and 0.07 C.
Thus;
Charge 1; q1 = 0.06 C
Charge 2; q2 = 0.07 C
Distance between them; r = 3 m
Formula for the force in between them is;
F = kq1•q2/r²
Where k is a constant = 9 × 10^(9) N.m²/C²
Thus;
F = (9 × 10^(9) × 0.06 × 0.07)/3²
F = 37.8 × 10^(6) N
The answer is 4.0 kg since the flywheel comes to rest the
kinetic energy of the wheel in motion is spent doing the work. Using the
formula KE = (1/2) I w².
Given the following:
I = the moment of inertia about the
axis passing through the center of the wheel; w = angular velocity ; for the
solid disk as I = mr² / 2 so KE = (1/4) mr²w². Now initially, the wheel is spinning
at 500 rpm so w = 500 * (2*pi / 60) rad / sec = 52.36 rad / sec.
The radius = 1.2 m and KE = 3900 J
3900 J = (1/4) m (1.2)² (52.36)²
m = 3900 J / (0.25) (1.2)² (52.36)²
m = 3.95151 ≈ 4.00 kg