Answer:
351 ohm
720 ohm
Explanation:
When c and d are open:
Terminals c and d are open.. If you redraw the circuit as below, you can see that the two resistors in the first column are in parallel as, they are connected together at both pairs of terminals (due to the short).
Hence, we have a pair of parallel resistors:
Req1 = (R1*R2)/ (R1 + R2) = 360*540/(360+540) = 216 ohms
Req2 = (R3*R4)/ (R3 + R4) = 180*540/(180+540) = 135 ohms
Now these two sets are in series with another Hence,
Req = Req1 + Req2 = 216 + 135 = 351 ohms
Answer: 351 ohms
When c and d are shorted:
The current will flow through the least resistant path naturally from resistors R3 and R1 or R4.
Both of these resistor lie in a single path placing the resistors in series to one another, hence
Req = R3 + R1 = 180 + 540 = 720 ohms
Answer:720 ohms
La velocidad vertical del tanque después de caer 10 m es 14 m/seg .
La velocidad vertical del tanque se calcula mediante la aplicación de la fórmula de velocidad , la componente vertical Vfy, del movimiento horizontal como se muestra a continuación :
Vfy=?
h = 10 m
Fórmula de Velocidad vertical Vfy:
Vfy² = 2*g*h
Vfy= √(2*9.8m/seg2* 10m )
Vfy= 14 m/seg
Vertical forces:
There is a force of 579N acting upward, and a force of 579N
acting downward.
The vertical forces are balanced ... they add up to zero ...
so there's no vertical acceleration.
Not up, not down.
Horizontal forces:
There is a force of 487N acting to the left, and a force of 632N
acting to the right.
The net horizontal force is
(487-left + 632-right) - (632-right - 487-right) = 145N to the right.
The net force on the car is all to the right.
The car accelerates to the right.
The two objects with electrical charges interact, which affect the strength of that interaction <span>amount of charge. The answer is letter A. The rest of the choices do not answer the question above.</span>
I believe it is green at 1,550