Answer:
Multiple answers:
1. Power output P=17.59W
2.Intensity 160m I=17.6W/
3. dB = 77.3
4. f=178.5 Hz
Explanation:
First one comes from the expression

where<em> I </em>is the intensity, <em>P </em>is the power and <em>r </em>is the radio of the spherical wave, or in this case, the distance <em>x</em>. I solved for the Power by multiplying Intensity with the area (4
Second one is done with:

Solving for Intensity 2, the result mentioned.
The third is simply computed with

And finally the last one is done with doppler effect, taking into account the speed of the air as in 10ºC 337m/s.

Where <em>Finitial</em> is the frequency emitted and <em>s</em> is the speed of the sound. The wind blowing in positive is, in principle, going away of the observer.
Answer:
v = 7.69 x 10³ m/s = 7690 m/s
T = 5500 s = 91.67 min = 1.53 h
Explanation:
In order for the satellite to orbit the earth, the force of gravitation on satellite must be equal to the centripetal force acting on it:

where,
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Me = Mass of Earth = 5.97 x 10²⁴ kg
r = distance between the center of Earth and Satellite = Radius of Earth + Altitude = 6.371 x 10⁶ m + 0.361 x 10⁶ m = 6.732 x 10⁶ m
v = orbital speed = ?
Therefore,

<u>v = 7.69 x 10³ m/s</u>
For time period satellite completes one revolution around the earth. It means that the distance covered by satellite is equal to circumference of circle at the given altitude.
So, its orbital speed can be given as:

where,
T = Time Period of Satellite = ?
Therefore,

<u>T = 5500 s = 91.67 min = 1.53 h</u>
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.