The correct answer is C) type of medium. Electromagnetic waves travel faster in solids than in liquids, and faster in liquids than in gases.
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
Answer:
For sound waves to travel, there is a requirement of medium and density of the medium is considered to be one of the factors on which the speed of sound depends. When the medium is dense, the molecules in the medium are closely packed which means that the sound travels faster.
Explanation:
Answer:
Visible light
X rays
ultraviolet radiation
gamma rays
microwave radiation
Explanation:
Electromagnetic waves consist of oscillating electric and magnetic fields which vibrate in a direction perpendicular to the direction of motion of the wave (transverse wave). Electromagnetic waves have all same speed in a vacuum (, known as speed of light) and are classified into 7 different types according to their frequency and wavelength. This classification is called electromagnetic spectrum.
From lowest to highest wavelength, the 7 types are:
Gamma rays
X-rays
Ultraviolet radiation
Visible light
Infrared radiation
Microwaves
Radio waves
Sound waves, on the contrary, do not belong to the electromagnetic spectrum, since they are another type of wave called mechanical waves (which consist of vibrations of the particles in a medium).
A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2