1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
5

A nonconducting rod of length L = 8.15 cm has charge –q = -4.23 fC uniformly distributed along its length.(a) What is the linear

charge density of the rod?What are the(b) magnitude and(c) direction(relative to the positive direction of the s-axis) of the electric field produced at point P, at a distance a = 12.0 cm from the rod? What is the electric field produced at point P, at distance a = 12.0 cm from the rod? What is the electric field magnitude produced at distance a = 50 m by(d) the rod and(e) a particle of charge –q = -4.23 fC that replaces the rod?
Physics
1 answer:
vichka [17]3 years ago
7 0

Answer:

a)  λ = 5.19 10⁻⁴ C/m , b)  E = 1,573 10⁻³ N/C , c) the direction of the field is directed to the bar

Explanation:

a) the linear density defined as the ratio between the charge per unit length

       λ = q / l

Let's start by reducing the units to the SI system

     L = 8.15 cm (1m / 100cm) = 8.15 10⁻² m

     a = 12 cm (1m / 100cm) = 12 10⁻² m

    q = -4.23 fC (1 C / 10¹⁵ ft) = -4.23 10⁻¹⁵ C

    λ = -4.23 10⁻¹⁵ C / 8.15 10⁻²

    λ = 5.19 10⁻⁴ C/m

b) Let's look for the electric field for a point at a distance a from the end of the bar

      E = k  dq / r²

To simplify the notation, suppose the bar is the x axis. Since the density is constant, we can write it differentially

     λ = dq/dx

     dq = λ dx

     E = k ∫ λ dx / x²

We integrate and evaluate between the lower limits x = a and higher x = L + a. Here we place the test point at the origin of the system

     E = k λ (-1 / x)

     E = k λ (-1 /(L + a) + 1 /a)

     E = k λ (L /a(L + a)

Let's change the density for its value

     E = k (q / L) (L / a (L + a)

     E = k q  1 /[a(L + a)]

     E = 8.99 10⁹ 4.23 10⁻¹⁵ [1 /12 10⁻²(8.15 10⁻² + ​​12 10⁻²)]

     E = 1,573 10⁻³ N/C  

c) the direction of the field is directed to the bar, because it has a negative charge

d) now we change the distance a = 50 cm = 0.50 m

Bar

      E = 8.99 10⁹ 4.23 10⁻¹⁵ ( 1 /0.5(0.0815 +0.5))

      E = 1,308 10⁻⁴ N/C

Charge point

      q = -4.23 10⁻¹⁵ C

     E = k q / r²

     E = 8.99 10⁹ 4.23 10⁻¹⁵ / 0.5²

     E = 1.521 10⁻⁴ N/C

You might be interested in
Two charges (q1 = 3.8*10-6C, q2 = 3.2*10-6C) are separated by a distance of d = 3.25 m. Consider q1 to be located at the origin.
Sergio039 [100]

Answer:

The distance is 1.69 m.

Explanation:

Given that,

First charge q_{1}= 3.8\times10^{-6}\ C

Second charge q_{2}=3.2\times10^{-6}\ C

Distance = 3.25 m

We need to calculate the distance

Using formula of electric field

E_{1}=E_{2}

\dfrac{kq_{1}}{x^2}=\dfrac{kq_{2}}{(d-x)^2}

\dfrac{q_{1}}{q_{2}}=\dfrac{(x)^2}{(d-x)^2}

\sqrt{\dfrac{q_{1}}{q_{2}}}=\dfrac{x}{d-x}

x=(d-x)\times\sqrt{\dfrac{q_{1}}{q_{2}}}

Put the value into the formula

x=(3.25-x)\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x+x\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})=3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}

x=\dfrac{3.25\times\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}}}{(1+\sqrt{\dfrac{3.8\times10^{-6}}{3.2\times10^{-6}}})}

x=1.69\ m

Hence, The distance is 1.69 m.

5 0
3 years ago
You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 12-m-hi
Vlada [557]

Answer:

Vmax=11.53 m/s

Explanation:

from conservation of energy

      E_A} =E_{B}

     Spring potential energy =potential energy due to elevation

   0.5*k*x²= mg(h_{B}-h_{A} )=mgh

   0.5*k*2.3²= 430*9.81*6

         k=9568.92 N/m

For safety reason

                                 k"=1.13 *k= 1.13*9568.92

                                    k"=10812.88 N/m

agsin from conservation of energy

      E_A} =E_{C}

    spring potential energy=change in kinetic energy

   0.5*k"*x²=0.5*m*V_{max}^{2}

      10812.88 *2.3²=430*V_{max}^{2}

           V_{max}=11.53 m/s

5 0
3 years ago
How is the number 3450 written in scientific notation?
sammy [17]

Answer:

B. 3.45 x 10^3

Explanation:

3450 = 3.45 \times  {10}^{3}  \\

4 0
3 years ago
Instruments in an airplane which is in level flight indicate that the velocity relative to the air (airspeed) is 180.00 km/h and
snow_lady [41]

Answer:

Explanation:

From the given information:

The coordinate axis is situated in the east and north direction.

So, the north will be the  y-axis and the east will be the x-axis

Similarly, the velocity of the plane in regard to the air in the coordinate system will be v_{P/A} = v( cos \theta \ i + sin \theta \ j)

where:

v_{P/A} = velocity of the plane in regard to the air

v = velocity

θ =  angle of inclination of the plane with respect to the horizontal

replacing v = 180 km/ and θ = 20° in above equation, then:

The velocity of the airplane in the coordinate system as:

v_{P} = v_o( cos \phi \ i + sin \phi \ j)

where;

v_p = velocity of the airplane

v_o = velocity

∅ = angle of inclination with regard to the base axis;

Then; replacing  v_o  = 150 km/h and ∅ = 30°

Therefore, the velocity of the plane in the system is :

v_p = v_A + v_{P/A}

v_A=  v_P  -v_{P/A}   --- (1)

v_A= ( 150 cos 30° - 180 cos 20°)i + ( 150 sin 30° - 180sin 20°)j

v_A= (-39.24 km/h)i + (13.44 km/h) j

The magnitude is:

v_A= (-39.24 km/h)i + (13.44 km/h) j

|v_A|^2 = \sqrt{ (-39.24 km/h)^2+ (13.44 km/h)^2}

v_A = 41.48 km/h

The airplane is moving at an angle of the inverse tangent to the abscissa and ordinate.

The angle of motion is:

tan θ = 39.24/13.44

tan θ = 2.9

θ  = tan ^{-1} (2.9)

θ  =  70.97°

The angle of motion is  70.97° from west of north with a velocity of 41.48 km/h.

5 0
3 years ago
Figure 1 shows a wave movement during one second. What is the frequency of the wave
Andreyy89
This is 2 hertz.  You can mark out 2 full wavelengths in the second of time.
4 0
3 years ago
Read 2 more answers
Other questions:
  • An object of mass 450 kg is released from rest 2000 m above the ground and allowed to fall under the influence of gravity. Assum
    14·1 answer
  • The number of significant figures in 10001 is<br> two.<br> five.<br> three.<br> six.
    15·2 answers
  • Using the word “more” to mean “I want another cookie” is an example of a( n):
    5·1 answer
  • A 68.5 kg astronaut is doing a repair in space on the orbiting space station. she throws a 2.25 kg tool away from her at 3.20 m/
    6·1 answer
  • How far will a car travel if it accelerates from rest at a rate of 2.25<br> m/s for 6.50 seconds?
    11·1 answer
  • Define fission and give an example of a reaction
    7·2 answers
  • Sphere a has a charge of -1.6*10^-6 C and sphere B has a charge of 1*10^-6 C. If they’re touched then separated, what will the c
    14·1 answer
  • _____________ circular motion occurs when an object is traveling with constant speed in a circle.
    13·1 answer
  • When unbalanced forces act on an object, __________________. the object accelerates friction becomes greater than the net force
    14·1 answer
  • The blank approach emphasizes the scientific study of observable actions and/or responses and their environmental determinants
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!