They both provide a range of years of an object. I think. They’re just 2 different ways to tell the age of fossils or rocks
Answer:
The change that has to take place inside the power cord in order for the device to function properly include;
The changing of the alternating current (AC) from the electrical outlet to the direct current having a specific voltage and current value with which the device can be powered
Explanation:
A battery powered device makes use of direct current (DC) electric power from a battery, while the power normally given out at an electrical outlet comes as an alternating current (AC) electric power source.
The power cord for battery-powered device, also known as an AC/DC adapter, that allows them to be plugged into electrical outlets converts the AC electric current it obtains from the electrical outlets to DC electrical current of the appropriate voltage and amperage that the device can make use of for electric power to function and for charging the battery which is the power source for the device
Therefore, the change that has to take place in the power cord is the conversion of the electric outlet alternating current (AC) voltage and amperage values, into direct current (DC) of the required voltage and current for the device
Answer:
Explanation:
(a)
Since the earth is assumed to be a sphere.
Volume of atmosphere = volume of (earth +atm osphere) — volume of earth
Hence the volume of atmosphere is
(b)
Write the ideal gas equation as foll ows:

Hence the required molecules is 
(c)
Write the ideal gas equation as follows:
Hence the required molecules in Caesar breath is
(d)
Volume fraction in Caesar last breath is as follows:
(e)
Since the volume capacity of the human body is 500 mL.

Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s