Answer:
The formal charge on nitrogen in
is +1.
Explanation:
The structure of
is as follows.
(In attachment)

From the structure, Nitrogen has no non bonding electrons. Nitrogen has four bonds and each bond corresponds to 2 electrons. Hence, nitrogen have eight bonding electrons and five valence electrons.
![Formal\,charge\,on\,nitrogen = 5-[0+ \frac{8}{2}]= +1](https://tex.z-dn.net/?f=Formal%5C%2Ccharge%5C%2Con%5C%2Cnitrogen%20%3D%205-%5B0%2B%20%5Cfrac%7B8%7D%7B2%7D%5D%3D%20%2B1)
Therefore, The formal charge on nitrogen in
is +1.
Answer:
In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases of that substance coexist in thermodynamic equilibrium. It is that temperatureand pressure at which the sublimation curve, fusion curve and vaporisation curve meet.
Answer:
Energy in the campfire originates from the potential chemical energy of the wood, before it is burnt to warm and give light around the campfire.
Explanation:
For a camp fire, the energy input is in the form of the potential chemical energy, stored up in the firewood used to fuel the flame.
The energy output is in the form of heat energy that the campfire radiates all around, light energy given off from the flame, and a little bit of sound energy, heard in the cracking of the firewood as they burn in the flame.
chemical energy ⇒ heat energy + light energy + sound energy
Answer:
25.2 kJ
Explanation:
The complete question is presented in the attached image to this answer.
Note that, the heat gained by the 2.00 L of water to raise its temperature from the initial value to its final value comes entirely from the combustion of the benzoic acid since there are no heat losses to the containing vessel or to the environment.
So, to obtained the heat released from the combustion of benzoic acid, we just calculate the heat required to raise the temperature of the water.
Q = mCΔT
To calculate the mass of water,
Density = (mass)/(volume)
Mass = Density × volume
Density = 1 g/mL
Volume = 2.00 L = 2000 mL
Mass = 1 × 2000 = 2000 g
C = specific heat capacity of water = 4.2 J/g.°C
ΔT = (final temperature) - (Initial temperature)
From the graph,
Final temperature of water = 25°C
Initial temperature of water = 22°C
ΔT = 25 - 22 = 3°C
Q = (2000×4.2×3) = 25,200 J = 25.2 kJ
Hope this Helps!!!