Answer:
[Top row] - Chemical bonds
[2nd Row L-R] - Force, Ionic, Covalent
[3rd Row L-R] - Atoms, Lost or Gained, Shared
[4th Row L-R] - More stable, Metal and Nonmetal, Nonmetal and Nonmetal
Explanation:
<u>Chemical bonds</u> are a<u> </u><u>force</u> that hold together <u>atoms</u> in a substance to make compounds <u>more stable.</u>
<u>Chemical bonds</u> include two kinds: <u>Ionic</u> and <u>Covalent.</u>
<u>Ionic</u> in which electrons are <u>lost or gained</u> where attraction is between a <u>Metal and Nonmetal.</u>
<u>Covalent</u> in which electrons are shared where attraction is between a <u>nonmetal and nonmetal</u>.
I have been able to fill the concept map using the correct terms or phrases. The concept map talks about chemical bonds. There are two types of chemical bonds; which ionic bond and covalent bond.
Answer:
D: lose an electron
Explanation:
when an atom loses an electron it's positively charged and when it gain an electron it is negatively charged
6g of hydrogen gas is my answer. I'm sorry if I'm wrong.
Answer:
4.1x10⁻⁵
Explanation:
The dissociation of an acid is a reversible reaction, and, because of that, it has an equilibrium constant, Ka. For a generic acid (HA), the dissociation happens by:
HA ⇄ H⁺ + A⁻
So, if x moles of the acid dissociates, x moles of H⁺ and x moles of A⁻ is formed. the percent of dissociation of the acid is:
% = (dissociated/total)*100%
4.4% = (x/[HA])*100%
But x = [A⁻], so:
[A⁻]/[HA] = 0.044
The pH of the acid can be calcualted by the Handersson-Halsebach equation:
pH = pKa + log[A⁻]/[HA]
3.03 = pKa + log 0.044
pKa = 3.03 - log 0.044
pKa = 4.39
pKa = -logKa
logKa = -pKa
Ka = 
Ka = 
Ka = 4.1x10⁻⁵
160gof CO2×1molof CO2\44g of CO2×1mole of C\1mol of CO2×12g of C\1mole of C=
43.63g of C