Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
Answer:
Explanation:
Chemically, we can have a reaction between chlorine gas and solid sodium
This reaction is actually explosive and would produce fine powder of sodium chloride
We have the reaction as follows:

Essentally, what we can deduce from here is that we do not need to add water to the flask. Except for the reason that we would want the sodium chloride solid in the solution form, there is absolutely no reason to add water to the flask as the reaction would proceed normally
Answer: I am pretty sure it is E
Explanation:
When in doubt pick C I don’t really know the answer but I just pick C
Answer: Burning changes the chemical make up of an object.
Explanation:
A chemical change can be defined as a change in the substance when it combines with other kind of substance to form a new substance. A chemical change can also occur when a substance is broken down into two or more products. These changes cannot be reversed. These changes affect the physical make up of an object. For example, burning as when an object is burned it cannot be transformed into its original form. A wood if burned can be converted into ash, water and carbon dioxide cannot regain its original form after burning so burning brings about chemical change in an object.