Reaction of
Acyl Halides with
Grignard reagent results in the formation of
Ketones in first step. While in second step reaction of Grignard reagent with Ketones results in the formation of
Tertiary Alcohols.
If you want to
stop the reaction at
Ketone stage then you are required to use another
mild reactive organometallic compound. In our case we will use Organocuprates.
Organocuprates are also known as Gilman Reagents. These reagents does not add to ketones, aldehydes and esters but they can add to acid halides to produce Ketones.
Answer:You can set up stoichiemetry using the following equation:
(15.6 g MgF2) x (38g F / 62g MgF2) x (6.022x10^23 / 19gF)
= 3.03 x 10^23 molecules of F
or 1.52 x 10^23 molecules of F2
The number of molecules of magnesium fluoride in 15.6 g of MgF2 has to be found.
The molecular mass of MgF2 is 62.3018. 15.6 g of MgF2 is equivalent to 15.6/62.3018 mole of MgF2.
One mole of a gas has 6.02214179*10^23 particles.
15.6/62.3018 mole of MgF2 has (15.6/62.3018)*6.02214179*10^23 molecules of the compound.
(15.6/62.3018)*6.02214179*10^23
=> 1.5079*20^23
If this is rounded to one decimal figure the result is 1.51*10^23.
The number of molecules of MgF2 in 15.6 g of the gas is 1.51*10^23.
<h3>Answer:</h3>
7.57 × 10⁻²² g of F
<h3>Solution:</h3>
Data Given:
Number of Molecules = 8
M.Mass of BF₃ = 67.82 g.mol⁻¹
Mass of Fluorine atoms = ?
Step 1: Calculate Moles of BF₃
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Putting value,
Moles = 8 Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Moles = 1.33 × 10⁻²³ mol
Step 2: Calculate Mass of BF₃:
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting values,
Mass = 1.33 × 10⁻²³ mol × 67.82 g.mol⁻¹
Mass = 9.0 × 10⁻²² g
Step 3: Calculate Mass of Fluorine Atoms:
As,
67.82 g BF₃ contains = 57 g of F
So,
9.0 × 10⁻²² g will contain = X g of F
Solving for X,
X = (9.0 × 10⁻²² g × 57 g) ÷ 67.82 g
X = 7.57 × 10⁻²² g of F
It is false :D I am 95% sure