The atom's center, or nucleus, is positively charged and the electrons that whirl around this nucleus are negatively charged, so they attract each other. The reason the force is strong is because the atom is so small. The distance between the nucleus and the electrons is about 1 Angstrom (named after a famous scientist); this is 0.00000001 cm (10-8 cm) or about 4 billionths of an
Answer:
Yes
Explanation:
Natural gas is colorless and odorless, and explosive, so a sulfur-smell (similar to rotten eggs) is usually added for early detection of leaks. ... Natural gas is a fossil fuel. Natural gas is a non-renewable hydrocarbon used as a source of energy for heating, cooking, and electricity generation.
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1
Answer :=11
Thank me later