Answer:
Gravity. An object is moving across a surface, but it does not gain or lose speed.
Explanation:
The basic idea. Physicists see gravity as one of the four fundamental forces that govern the universe, alongside electromagnetism and the strong and weak nuclear forces.
Hope it helps! Brainliest?
Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is
![F=K\dfrac{ q_{1}q_{2}}{r^{2}}](https://tex.z-dn.net/?f=F%3DK%5Cdfrac%7B%20q_%7B1%7Dq_%7B2%7D%7D%7Br%5E%7B2%7D%7D)
where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write
![F=\dfrac{k}{r^{2}}](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7Bk%7D%7Br%5E%7B2%7D%7D)
1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A
![\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}} - \dfrac{k}{(2d)^{2}} +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DF_%7BA%7D%20%26%20%3D%20%26%20F_%7BB%7D%20%2B%20F_%7BC%7D%20%2B%20F_%7BD%7D%5C%5C%26%20%3D%20%26%20-%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%20%20-%20%5Cdfrac%7Bk%7D%7B%282d%29%5E%7B2%7D%7D%20%20%2B%5Cdfrac%7Bk%7D%7B%283d%29%5E%7B2%7D%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28-1%20-%20%5Cdfrac%7B1%7D%7B4%7D%20%2B%20%5Cdfrac%7B1%7D%7B9%7D%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%5Cdfrac%7B-36%20-%209%20%2B%204%7D%7B36%7D%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cmathbf%7B-%5Cdfrac%7B41%7D%7B36%7D%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%7D%5C%5C%5C%5C%5Cend%7Barray%7D)
(b) Force on B
![\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}} - \dfrac{k}{d^{2}} + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DF_%7BB%7D%20%26%20%3D%20%26%20F_%7BA%7D%20%2B%20F_%7BC%7D%20%2B%20F_%7BD%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%20%20-%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%20%20%2B%20%5Cdfrac%7Bk%7D%7B%282d%29%5E%7B2%7D%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%5Cdfrac%7B1%7D%7B4%7D%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%5Cmathbf%7B%5Cdfrac%7B1%7D%7B4%7D%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%7D%5C%5C%5C%5C%5Cend%7Barray%7D)
(C) Force on C
![\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}} + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DF_%7BC%7D%20%26%20%3D%20%26%20F_%7BA%7D%20%2B%20F_%7BB%7D%20%2B%20F_%7BD%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7B%282d%29%5E%7B2%7D%7D%20%2B%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%20%20%2B%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%20%5Cdfrac%7B1%7D%7B4%7D%20%2B1%20%2B%201%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%5Cdfrac%7B1%20%2B%204%20%2B%204%7D%7B4%7D%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cmathbf%7B%5Cdfrac%7B9%7D%7B4%7D%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%7D%5C%5C%5C%5C%5Cend%7Barray%7D)
(d) Force on D
![\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}} - \dfrac{k}{(2d)^{2}} - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DF_%7BD%7D%20%26%20%3D%20%26%20F_%7BA%7D%20%2B%20F_%7BB%7D%20%2B%20F_%7BC%7D%5C%5C%26%20%3D%20%26%20-%5Cdfrac%7Bk%7D%7B%283d%29%5E%7B2%7D%7D%20%20-%20%5Cdfrac%7Bk%7D%7B%282d%29%5E%7B2%7D%7D%20%20-%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%20-%5Cdfrac%7B1%7D%7B9%7D%20-%20%5Cdfrac%7B1%7D%7B4%7D%20-1%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%5Cleft%28%5Cdfrac%7B-4%20-%209%20-36%7D%7B36%7D%20%5Cright%29%5C%5C%5C%5C%26%20%3D%20%26%20%5Cmathbf%7B-%5Cdfrac%7B49%7D%7B36%7D%20%5Cdfrac%7Bk%7D%7Bd%5E%7B2%7D%7D%7D%5C%5C%5C%5C%5Cend%7Barray%7D)
(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.
![F_{A} : F_{B} : F_{C} : F_{D} = \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\](https://tex.z-dn.net/?f=F_%7BA%7D%20%3A%20F_%7BB%7D%20%3A%20F_%7BC%7D%20%3A%20F_%7BD%7D%20%20%3D%20%20%5Cdfrac%7B41%7D%7B36%7D%20%3A%20%5Cdfrac%7B1%7D%7B4%7D%20%3A%20%5Cdfrac%7B9%7D%7B4%7D%20%3A%20%5Cdfrac%7B49%7D%7B36%7D%5C%20%3D%2041%20%3A%209%20%3A%2081%20%3A%2049%5C%5C%5C%5C%5Ctext%7BC%20experiences%20the%20largest%20net%20force.%7D%5C%5C%5Ctext%7BB%20experiences%20the%20smallest%20net%20force.%7D%5C%5C)
2. Ratio of largest force to smallest
![\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}](https://tex.z-dn.net/?f=%5Cdfrac%7B%20F_%7BC%7D%7D%7B%20F_%7BB%7D%7D%20%3D%20%5Cdfrac%7B81%7D%7B9%7D%20%3D%20%5Cmathbf%7B9%3A1%7D%5C%5C%5C%5C%5Ctext%7BThe%20ratio%20of%20the%20largest%20force%20to%20the%20smallest%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B9%3A1%7D%7D%24%7D)
there here is your answer to your question
Uncertainty in measurements and calculations means difference between actual and measured data. We can say that all measurements have some degree of uncertainty. ... Systematic error (because of error in measuring instrument) 2. Random error (human errors such as- delay in starting, delay in stopping).
Velocity is a vector quantity. A vector quantity has both a magnitude and a direction. Speed only has a magnitude, but no direction. Velocity has both.
Answer:
<h3>
2.3125m/s²</h3>
Explanation:
Using the equation of motion v² = u²+2aS
v is the final velocity = 120km/hr
120km/hr = 120 * 1000/1 * 3600 = 33.3m/s
u is the initial velocity = 0m/s
a is the acceleration
S is the distance covered = 240m
On substituting the given parameters
33.3² = 0²+2a(240)
33.3² = 480a
1110 = 480a
a = 1110/480
a = 2.3125m/s²
Hence the minimum constant acceleration that the aircraft require to be airborne after a takeoff run of 240 m is 2.3125m/s²