Answer:
Option B is the correct answer.
Explanation:
Thermal expansion

L = 1.2 meter
ΔT = 65 - 15 = 50°C
Thermal Expansion Coefficient for aluminum, α = 24 x 10⁻⁶/°C
We have change in length

New length = 1.2 + 1.44 x 10⁻³ = 1.2014 m
Option B is the correct answer.
Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
FOUR USES OF CONCAVE MIRROR:Satellite dishes,headlights of a car, telescopes used for astronomical studies, and shaving mirrors because of there curved and reflective surface.
FIVE USES OF LENSES: Camera lens ,microscopes ,magnifying glass,eyeglasses,projector
Explanation:
Let
and 
The sum of the two vectors is


The difference between the two vectors can be written as


Answer:
The frequency of the photon is
.
Explanation:
Given that,
Energy
We need to calculate the energy
Using relation of energy

Where,
= energy spacing


Put the value of h into the formula


Hence, The frequency of the photon is
.