1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
8

An alternating current is supplied to an electronic component with a rating that the voltage across it can never, even for an in

stant, exceed 16 V. What is the highest rms voltage that can be supplied to this component while staying below the voltage limit?
A)8 sqrt 2 V

B) 16 sqrt 2 V

C) 256 V

D) 8
Physics
1 answer:
Vsevolod [243]3 years ago
7 0

Answer:

A) V_{rms}=8\sqrt{2} V

Explanation:

Maximum voltage =V_{max}=16 V

Maximum voltage and rms voltage are related to each other by

V_{max}=V_{rms} \times \sqrt{2} \\V_{rms}=\frac{V_{max}}{ \sqrt{2}}\\V_{rms}=\frac{16}{\sqrt{2}} \\V_{rms}=8\sqrt{2} V

You might be interested in
Whats the answer<br> ----------------------------
GenaCL600 [577]

Answer:

repel each other

Explanation:

The magnitude of the charge of an electron is called... ... If a positively-charged glass rod is suspended so that it turns easily and another positively-charged glass rod is brought close to it, the two rods will... Repel each other.

8 0
2 years ago
At 20 degrees Celsius, conducting wires made of different materials have the same length and the same diameter. Which wire has t
DENIUS [597]

Answer:

Aluminium

Explanation:

Aluminium has the least resistance since It has 3 free electrons per atom. Its resistivity is low compared to other metals provided in the choices (gold, nichrome, tungsten). Low resistivity of metals means a high conductance of the metal referred to.

7 0
3 years ago
A celebrated Mark Twain story has motivated contestants in the Calaveras County Jumping Frog Jubilee, where frog jumps as long a
IrinaK [193]

The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.

To find the answer, we need to know about the time of flight and range of projectile motion.

<h3>What's the expression of range of a projectile motion?</h3>
  • Range = U²× sin(2θ)/g
  • U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
  • U=√{Range×g/sin(2θ)}
  • Here, range= 2.20m, = 36.5°
  • U= √{2.20×9.8/sin(73)}

U= √{2.20×9.8/sin(73)} = 22.5m/s

<h3>What's the expression of time of flight in projectile motion?</h3>
  • Time of flight= (2×U×sinθ)/g
  • So, T= (2×22.5×sin36.5°)/9.8

= 2.73 s

Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.

Learn more about the range and time period of projectile motion here:

brainly.com/question/24136952

#SPJ1

4 0
2 years ago
Find the difference between two masses measured as 123.6 grams and 115.972 grams. Express the answer to the correct number of si
xxTIMURxx [149]

Answer:

The difference is 7.6 grams.

Explanation:

In mathematics the difference of two numbers is express as the subtraction between them:

         

a-b

So to find out the difference between the two measured masses, a will be represented by 123.6 grams since is the bigger number, and b by 115.972 grams.

Therefore, it is get:

123.6grams-115.972grams = 7.6grams

<u>Hence, the difference is 7.6 grams. </u>

The result of 7.628 will be expressed as 7.6 to have the correct number of significant figures.          

 

Notice how that can be express in units of kilograms too since there is 1000 gram in 1 kilogram:

7.6grams . \frac{1Kg}{1000grams} ⇒ 7.6x10^{-3}Kg

8 0
3 years ago
As a mass on a spring moves farther from the equilibrium position, how do the velocity, acceleration, and force change
Umnica [9.8K]
Refer to the diagram shown below.

m =  the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A =  the amplitude ( the maximum distance) of the mass from the equilibrium
        position

The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω =  the circular frequency of the motion
T =  the period of the motion so that ω = (2π)/T

The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)

In the equilibrium position,
x is zero;
v is maximum;
a is zero.

At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.

In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.

6 0
3 years ago
Other questions:
  • A Micro –Hydro turbine generator is accelerating uniformly from an angular velocity of 610 rpm to its operating angular velocity
    10·1 answer
  • Which of the following terms best describes why a skier sliding down a hill eventually comes to a stop?
    15·2 answers
  • Why is it good for scientist to be skeptical
    9·1 answer
  • Charge Q is distributed on a metallic sphere of radius a. What is the electric field at a point a distance r from the center of
    5·1 answer
  • The_______ of an object is given relative to an origin
    8·1 answer
  • PLEASE HELP ME AND REALLY NEED THIS ANSWER QUIKLY
    6·1 answer
  • Do this work if someone give correct answer I make her brainliest do this worksheet please
    11·2 answers
  • Which force stops the car from moving?
    14·2 answers
  • Balance the following chemical equation:<br> H3PO4 + HCl → PC15 + H20
    8·1 answer
  • The gravitational force between two objects is f. If masses of both objects are halved without changing distance between them, t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!