Answer:
If she stands on the North side of a river flowing to the East at 5 mph,
she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have
x^2 + 5^2 = 10^2 where x is her speed directly across the river
x = (75)^1/2 = 8.66 mph towards the South
sin theta = 5 / 10 = 1/2
She must angle the boat at 30 deg from straight South
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
SI will always be in metric, so the answer is D. Meter.
Hi,
The correct answer is letter B.
The last group contains noble gases, while both along the top and along the bottom the elements on the right are non-metals.