Image from a far away object formed by a concave mirror
I have no idea but this is my best guess as a sophomore in college
Answer:
a) 500
b)-500, north west
Explanation:
a) sum of F= F1+F2= 200+300= 500
b) sum of forces=0
so 200+300-500+0
It will sink because mass does not affect the physical properties of the object.
The whole definition of frequency is: <em>How often something happens. </em>
Especially referring to something that happens over and over and over and over.
One example is Choice-C: How often the particles of a medium vibrate.
"Frequency" comes from the word "frequent". That means "often", and "frequency" just means "often-ness" ... HOW often the thing happens.
Some other examples:
Frequency of jump-roping . . . maybe 60 per minute .
Frequency of rain . . . maybe 5 per month .
Frequency of an AM radio station . . . maybe 1 million waves per second.
(If it's something <u><em>per second</em></u>, then we call it "Hertz". That's not for the car rental company. It's for Heinrich Hertz, the German Physicist who was the first one to prove that electromagnetic waves exist. He sent radio waves all the way ACROSS HIS LABORATORY and detected them at the other side ( ! ), in 1887.)
Frequency of the wiggles in the sound wave coming out of a trumpet playing the note ' A ' . . . 440 Hertz.
Frequency of sunrise and the Chicago Tribune newspaper . . . 1 per day
Frequency of the cycle of Moon phases and an average human woman's ovulation cycle: 1 per 29.531 days, 1 per ~28 days .
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))