Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
You could use a magnetic generator or you could use hydraulic power
W=20 e(-kt)
A. Rearranging gives k= -(ln(w/20)/t
Substituting w= 10 and solving gives k=0.014
B. Using W=20e(-kt). After 0 hours, W=20. After 24 hours, W=14.29g. After 1 week (24x7=168h) W=1.9g
C. Rearranging gives t=-(ln(10/20)/k. Substituting w=1 and solving gives t=214 hours.
D. Differentiating gives dW/ dt = -20ke(-kt). Solving for t=100 gives dW/dt = 0.07g/h. Solving for t=1000 gives 0.0000002g/h
E. dW/dt = -20ke(-kt). But W=20e(-kt) so dW/dt = -kW
... find length
(way 1) determine acceleration using force
only force act on skier is mg vertically. spilt vector we get force along the incline = mgsin(10) and f= ma so
ma = mgsin(10) or a = gsin(10)
a (along the incline)= gsin(10) = 10sin(10) = 1.74
v^2 = u^2 + 2as
15^2 = 3^2 + 2(1.74)s
s = 62.06 m
(way 2) using conservation of energy
energy (KE+PE) on top = energy at bottom
0.5m3^2 + mgh = 0.5m15^2 +0
h (height of incline) = (112.5 - 4.5)/10 = 19.8 m
length of incline = h/sin(10) = 62.2 m ; trigonometry
... find time
s = (u+v)t/2
t = 2s/(u+v) = 2(62.2)/(3+15) = 6.91 s
Melting: as mantle material rise toward the divergent plate boundary the pressure is reduced which causes melting