<span>Wedges is your answer please mark brainliest </span>
Answer:
Explanation:
To solve this, we start by using one of the equations of motion. The very first one, in fact
1
V = U + at.
V = 0 + 0.8 * 3.4 = 2.72 m/s.
2.
V = 0 + 0.8 * 4.3 = 3.44 m/s.
3.
d = ½ * 0.8 * 4.3² + 3.44 * 12.9
d = 7.396 + 44.376
d = 51.77 m.
4.
d = 62 - 51.77 = 10.23 m. = Distance
traveled during deceleration.
a = (V² - Vo²) / 2d.
a = (0² - 3.44²) / 20.46
a = -11.8336 / 20.46 = -0.58 m/s²
5.
t = (V - Vo)/a =(0 - 3.44) / -0.58
t = -3.44/-.58 = 5.93 s
= Stop time.
T = 4.3 + 12.9 + 5.93 = 23.13 s. = Total
time the hare was moving.
6.
d = Vo * t + ½ * a * t² = 62 m.
0 + 0.5 * (23.13)² * a = 61
267.5a = 61
a = 61/267.5
a = 0.23 m/s²
Answer:

Explanation:
Given that
Number of particle =N
Equilibrium temperature= T
Side of cube = L
Gravitational acceleration =g
The kinetic energy of an atom given as

Where
Equilibrium temperature= T
Boltzmann constant =K
K =1.380649×10−23 J/K
Answer:
ΔK.E = 14 nJ
Explanation:
Solution:
- The charge that moves under the influence of an Electric Field produced between a potential difference (V) stores electric potential energy U within that is converted to kinetic energy.
- We will use conservation of energy on the system that contains the charged particle with charge q loses its electric potential energy U as it moves towards positively charged object that converts into a gain in Kinetic energy of the charged particle ΔK.E:
ΔK.E = U
Where,
U = V*q
ΔK.E = V*q
ΔK.E = (7*10^-6)*(2*10^-3)
ΔK.E = 14 nJ
- The gain in kinetic energy is 14 nJ.