Answer:
MgCl2 + 2AgNO3 → 2AgCl + Mg(NO3)2
Explanation:
I'm assuming you want to balance it so...
The first thing I see is that there are two chlorines on the reactant side and one on the product side
Adding a coefficient of 2 would get 2AgCl2
Now there are two silvers on the reactant side, so add a 2 to AgNO3 on the products side. Now they are all balanced.
If that is not what you are looking for let me know!
Answer:
All right. So let's calculate the density of a glass marble. Remember that the formula for density is mass over volume. So if I know that the masses 18.5 g. And I know that the um volume is 6.45 cubic centimeters. I can go ahead and answer this to three significant figures. So it's going to be 2.87 grams per cubic centimeter. Okay, that's our density. Now, density is an intensive process. Okay. We're an intensive property. I really should say. It doesn't depend on how much you have. Mhm. If I have one marble, its density is going to be 2.87 g per cubic centimeter. If I have two marbles, the density will be the same because I'll double the mass and I'll also double the volume. So when I divide them I'll get the same number. Okay, that's what makes it an intensive property. No matter how many marbles I have, they'll have the same density. Mass though is not an intensive property. So if I have six marbles and I want to know what the massive six marbles is. Well, I know the mass of each marble is 18.5 g. So the mass of six marbles Is going to be 100 11 g. Because mass is an extensive property. It depends on how much you have. If I change the number of marbles, I'm going to change the mass. That's an extensive property. All right. So we've calculated the density. We've calculated the mass and then what happens to the density of one marble compared to six marbles as we mentioned before. Since densities and intensive property, the densities will be the same, no matter how may.
Explanation:
Answer:
A. prevention of further erosion
I hope this is the correct answer
Answer:
The photosynthesis process is interrupted.
Explanation:
Algae produce energy using the photosynthesis process. The reduction of 3-phosphoglycerate to glyceraldehyde 3-phosphate is part of this process. Despite this reduction reaction being light-independent (Calvin Cycle), the precursors of this reaction are synthesized in light-dependent steps.
This is the reason why the reduction is blocked when the algae is placed in the dark.
We have to draw the structural formula of trans-1-bromo-3-isopropylcyclobutane.
The structure is shown below in Figure1.
The molecule trans-1-bromo-3-isopropylcyclobutane has four atoms in the skeleton and Br atom is attached at 1 position and isopropyl group at 3-position.
Trans structure means both groups are in opposite directions.