Explanation:
The given reaction is as follows.

Value of equilibrium constant is given as
= 4.3 \times 10^{6}[/tex].
Concentration of given species is
= 0.010 M;
= 10.M;
= 0.010 M.
Formula for experimental value of equilibrium constant (Q) is as follows.
Q =
Putting the given concentration as follows.
Q =
Q = 
Q = 
It is known that when Q >
, then reaction moves in the backward direction.
When Q <
, then reaction moves in the forward direction.
When Q =
, then reaction is at equilibrium.
As, for the given reaction Q >
then it means reaction moves in the backward direction.
Thus, we can conclude that the reaction is moving in the backward direction, that is, right to left to reach the equilibrium.
Answer:
I
Explanation:
Among the halogens given in this problem, iodine has the lowest attraction for electrons.
This property is known as electronegativity.
Electronegativity is expressed as the relative tendency with which the atoms of the element attracts valence electrons in a chemical bond.
- As you go down the periodic group the electronegativity decreases.
- The most electronegative element on the periodic table is fluorine.
- Down the group, iodine is the least electronegative
- This is due to the large size of its atom.
<u>Answer:</u> The molality of magnesium chloride is 1.58 m
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute (magnesium chloride) = 75.0
= Molar mass of solute (magnesium chloride) = 95.21 g/mol
= Mass of solvent = 500.0 g
Putting values in above equation, we get:

Hence, the molality of magnesium chloride is 1.58 m
Ice because the molecules have less movement in solids