Answer:
C
Explanation:
okay, you need to look at the structures of the particles of matter in the solid, liquid and gas.
- particles in a solid are in fixed positions, where they can only vibrate in those positions ( take a look at ice, or rather, a brick)
- liquids have very small or rather, no spaces between them, but they can slide or rub against each other, like people in a <em>really tight</em> crowd I guess
- gas particles have very large spaces between them and they move randomly. these exibit what's called brownian motion.
- since water particles (and all other liquid particles) have negligible spacings and limited movement, that allows the dye particles to move from a region of high concentration to that of a low concentration. the aim for this is for the mixture/solution to reach an equilibrium, that is the mixture must get to a point where all regions have the same concentration of the dye.
you can refer to your coursebooks :)
correct where wrong please:)
Answer:
See Explanation and image attached
Explanation:
Methane is an alkane. The commonest chemical reaction that alkanes undergo is substitution. During a substitution reaction, one or more atoms of hydrogen is/are replaced in the alkane.
In methane, in the presence of sunlight and molecular chlorine gas, a homolytic fission of Cl2 occurs to yield chlorine radicals in an initiation step.
The propagation steps involve reaction of the methane with chlorine radicals. Certain intermediates continue to be formed along the way until the tetrachlorination product is finally obtained.
Answer: Biological Magnification
Explanation:
Organisms acquire toxic substance from the environment along with nutrients and water. Some of the toxins are metabolized and excreted, but others accumulate in specific tissues, especially fat. One of the reasons accumulated toxins are particularly harmful is that the become more concentrated in successive trophic level of the food web, this is the process of biological magnification.
Magnification occurs because the biomass at any given level is produced from a must larger biomass ingested from the level below. Thus the top-level carnivores tend to be the organism most severely affected by toxic compounds in the environment.
Examples of toxins that demonstrate biology magnification are chlorinated hydrocarbons, and many pesticides.
Answer: 4.21×10⁻⁸
Explanation:
1) Assume a general equation for the ionization of the weak acid:
Let HA be the weak acid, then the ionization equation is:
HA ⇄ H⁺ + A⁻
2) Then, the expression for the ionization constant is:
Ka = [H⁺][A⁻] / [HA]
There, [H⁺] = [A⁻], and [HA] = 0.150 M (data given)
3) So, you need to determine [H⁺] which you do from the pH.
By definition, pH = - log [H⁺]
And from the data given pH = 4.1
⇒ 4.10 = - log [H⁺] ⇒ [H⁺] = antilog (- 4.10) = 7.94×10⁻⁵
4) Now you have all the values to calculate the expression for Ka:
ka = 7.94×10⁻⁵ × 7.94×10⁻⁵ / 0.150 = 4.21×10⁻⁸
For balancing acidic solutions, we would need to add H+ ions to the correct side of the equation to balance the total number of atoms and the overall charge.