M₁ = mass of water = 75 g
T₁ = initial temperature of water = 23.1 °C
c₁ = specific heat of water = 4.186 J/g°C
m₂ = mass of limestone = 62.6 g
T₂ = initial temperature of limestone = ?
c₂ = specific heat of limestone = 0.921 J/g°C
T = equilibrium temperature = 51.9 °C
using conservation of heat
Heat lost by limestone = heat gained by water
m₂c₂(T₂ - T) = m₁c₁(T - T₁)
inserting the values
(62.6) (0.921) (T₂ - 51.9) = (75) (4.186) (51.9 - 23.1)
T₂ = 208.73 °C
in three significant figures
T₂ = 209 °C
Answer:
The pressure is higher than the atmospheric one, therefore the temperature is less.
Explanation:
When it is closed permanently, the pressure of the pot inside it increases, generating that the atoms and particles of the water are closer together, increasing their kinetic energy, if intermolecular friction and therefore the boiling point is lower, because the water reaches a boil or boil at a lower temperature.
Answer:
For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Explanation:
The computation of the mass of each element is given below:
As we know that
A1 mole of ammonium nitrate i.e. 2 mol N, 4 mol H, 3 mol
Now we multiply each of above by the molar masses
For N
= 14.0 g/mol × 2
= 28.0 gN
For H
= 1.0 g/mol × 4
= 4.0 gN
ANd, for O
= 16.0 g/mol × 3
= 48.0 gN
Hence, For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Atomic <span>mass gold = 196.96 u.m.a
196.96 g ------------------ 6.02x10</span>²³ atoms
112 g ---------------------- ( atoms)
atoms = 112 x ( 6.02x10²³) / 196.96
atoms = 6.74x10²⁵ / 196.96
= 3.42x10²³ atoms
hope this helps!