Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!
I would have helped but I didn’t understand it sorry that I didn’t answer :(
Answer:
44.8 L
Explanation:
Ideal Gas Equation -
i.e.,
PV = nRT
where,
P = pressure
V = volume
n = moles
R = universal gas constant
T = temperature
Using the information given in the question, Volume of the gas can be calculated -
P = 101.3 kPa
V = ?
n = 2.00 moles
R = 8.31
T = 0 degree C = 273.15 K
Using the above data, and putting the data in the respective formula -
PV = nRT
101.3 kPa * V = 2.00 moles * 8.31 * 273.15 K
V = 44.8 L
Hence, the volume of the given gas = 44.8 L
Relative molecular mass or RMM is the answer.