Answer:
3-methylhexane
Explanation:
you start counting from the longest chain to determine the correct name
<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol
1) Formulas:
a) mole fraction of component 1, X1
X1 = number of moles of compoent 1 / total number of moles
b) Molar mass = number grams / number of moles => number of moles = number of grams / molar mass
2) Application
Number of moles of CaI2 = 0.400
Molar mass of water = 18.0 g/mol
Number of moles of water: 850.0 g / 18.0 g/mol = 47.22 mol
Total number of moles = 0.400 + 47.22 =47.62
Molar fraction of CaI2 = 0.400 / 47.62 = 0.00840
Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.
The correct answer is C) There are more particle collision
With more particle collision, more reactions are created.