1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
11

WILL MAKR BRIANLIEST IF RIGTH!!!

Mathematics
1 answer:
kicyunya [14]3 years ago
5 0

Answer:

3 units

Step-by-step explanation:

By intersecting chords theorem:

AE \times EB = CE \times ED

\therefore 3 \times 4= x \times (x+1)

\therefore 12= x^2 +x

\therefore  x^2 +x-12=0

\therefore  x^2 +4x-3x-12=0

\therefore  x(x +4)-3(x+4)=0

\therefore  (x +4)(x-3)=0

\therefore  (x +4)=0, \: (x-3)=0

\therefore  x=-4, \: x=3

Since, the value of x can not be negative.

\therefore x\neq - 4

\implies x = 3

\implies CE = 3

You might be interested in
marcys breakfast table has a square table top with an area of 36 square feet. what is the diagonal length of the table top​
MAXImum [283]

Answer:

√36 = 6

a^2 + b^2 = c^2

6^2 + 6^2 = c^2

36 + 36 = c^2

72 = c^2

√72 = c

2 36

2 18

2 9

3 3

6√2 = c

6√2 = (estimate rounded up, 8.49)

7 0
3 years ago
Find two power series solutions of the given differential equation about the ordinary point x = 0. compare the series solutions
monitta
I don't know what method is referred to in "section 4.3", but I'll suppose it's reduction of order and use that to find the exact solution. Take z=y', so that z'=y'' and we're left with the ODE linear in z:

y''-y'=0\implies z'-z=0\implies z=C_1e^x\implies y=C_1e^x+C_2

Now suppose y has a power series expansion

y=\displaystyle\sum_{n\ge0}a_nx^n
\implies y'=\displaystyle\sum_{n\ge1}na_nx^{n-1}
\implies y''=\displaystyle\sum_{n\ge2}n(n-1)a_nx^{n-2}

Then the ODE can be written as

\displaystyle\sum_{n\ge2}n(n-1)a_nx^{n-2}-\sum_{n\ge1}na_nx^{n-1}=0

\displaystyle\sum_{n\ge2}n(n-1)a_nx^{n-2}-\sum_{n\ge2}(n-1)a_{n-1}x^{n-2}=0

\displaystyle\sum_{n\ge2}\bigg[n(n-1)a_n-(n-1)a_{n-1}\bigg]x^{n-2}=0

All the coefficients of the series vanish, and setting x=0 in the power series forms for y and y' tell us that y(0)=a_0 and y'(0)=a_1, so we get the recurrence

\begin{cases}a_0=a_0\\\\a_1=a_1\\\\a_n=\dfrac{a_{n-1}}n&\text{for }n\ge2\end{cases}

We can solve explicitly for a_n quite easily:

a_n=\dfrac{a_{n-1}}n\implies a_{n-1}=\dfrac{a_{n-2}}{n-1}\implies a_n=\dfrac{a_{n-2}}{n(n-1)}

and so on. Continuing in this way we end up with

a_n=\dfrac{a_1}{n!}

so that the solution to the ODE is

y(x)=\displaystyle\sum_{n\ge0}\dfrac{a_1}{n!}x^n=a_1+a_1x+\dfrac{a_1}2x^2+\cdots=a_1e^x

We also require the solution to satisfy y(0)=a_0, which we can do easily by adding and subtracting a constant as needed:

y(x)=a_0-a_1+a_1+\displaystyle\sum_{n\ge1}\dfrac{a_1}{n!}x^n=\underbrace{a_0-a_1}_{C_2}+\underbrace{a_1}_{C_1}\displaystyle\sum_{n\ge0}\frac{x^n}{n!}
4 0
3 years ago
Please help me I need it tomorrow at least until 7:50 or8:30
Lemur [1.5K]
3 pints, 1gallon, 1quart
7 0
3 years ago
Read 2 more answers
A motorcycle breaks down and the rider has to walk the rest of the way to work. The motorcycle was being driven at 45 mph and th
UNO [17]

Answer:26 mile

Step-by-step explanation:

5 0
3 years ago
I will give brainliest answer to these questions
cupoosta [38]

Answer:

THATS MADDDD CAPPPP U NEED 25 POINTS OF THE QUESTION FOR BRAINLIEST

5 0
3 years ago
Other questions:
  • The ratio of green M&Ms to
    9·1 answer
  • Three hundred seventeen kids went on a field trip last
    10·2 answers
  • Write the equation and then solve the equation
    7·2 answers
  • Which number is not in scientific notation? 7 ⋅ 1024 0.8 ⋅ 103 1.09 ⋅ 10–2 1.8 ⋅ 10–5
    9·1 answer
  • What’s the area of this
    7·2 answers
  • Geometry//// volume of a cylinder ✨✨✨✨
    6·1 answer
  • Please Hurry Need Answer<br><br> -2/5 + 4/5
    5·1 answer
  • Adding/subtracting polynomials <br>​
    5·1 answer
  • Find the area of the figure below:
    15·1 answer
  • Consider the graph of f(x) given below.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!