Ángulo agudo es aquel que mide menos de 90º
The area of a rectangle is 108cm (squared. the ratio of the width to the length is 3:4
Answer:
it can hold 6000 cans
Step-by-step explanation:
brainliest plz
Answer:
The correct answer is t < 60.
Step-by-step explanation:
Lauren wants to keep her cell phone bill below $60 per month.
Lauren's current cellphone plan charges her a fixed price of $30 and per text price for one text is $0.50.
Let Lauren sends t texts in a complete month.
Total money spent on texts in a month is given by $ (0.50 × t)
Therefore Lauren's total spent in a month is given by $ (30 + (0.50 × t)).
But this amount should be under $60 as per as the given problem.
∴ 30 + (0.50 × t) < 60
⇒ (0.50 × t) < 30
⇒ t < 
⇒ t < 60.
So in order to keep her phone monthly bill under $60, Lauren should keep her number of texts below 60.
<span><u><em>The correct answer is:</em></u>
180</span>°<span> rotation.
<u><em>Explanation: </em></u>
<span>Comparing the points D, E and F to D', E' and F', we see that the x- and y-coordinates of each <u>have been negated</u>, but they are still <u>in the same position in the ordered pair. </u>
<u>A 90</u></span></span><u>°</u><span><span><u> rotation counterclockwise</u> will take coordinates (x, y) and map them to (-y, x), negating the y-coordinate and swapping the x- and y-coordinates.
<u> A 90</u></span></span><u>°</u><span><span><u> rotation clockwise</u> will map coordinates (x, y) to (y, -x), negating the x-coordinate and swapping the x- and y-coordinates.
Performing either of these would leave our image with a coordinate that needs negated, as well as needing to swap the coordinates back around.
This means we would have to perform <u>the same rotation again</u>; if we began with 90</span></span>°<span><span> clockwise, we would rotate 90 degrees clockwise again; if we began with 90</span></span>°<span><span> counter-clockwise, we would rotate 90 degrees counterclockwise again. Either way this rotates the figure a total of 180</span></span>°<span><span> and gives us the desired coordinates.</span></span>