Answer:
"A translation of 7 units to the left followed by a translation of 1 unit down".
Step-by-step explanation:
There are multiple transformations that map one point into another, here is one example that works particularly for translations, which are the simplest (and usually the most used) transformations.
Suppose that we have the point (a, b) which is transformed into (a', b')
Then we have a horizontal translation of (a' - a) units followed by a vertical translation of (b' - b) units.
(the order of the translations does not matter, is the same having first the vertical translation and then the horizontal one).
Here we have the point A (3, 4) transformed into (-4, 3)
Then we have a horizontal translation of ((-4) - 3) = -7 units followed by a vertical translation of (3 - 4) = -1 units.
Where a horizontal translation of -7 units is a translation of 7 units to the left, and a vertical translation of -1 unit is a translation of 1 unit down.
Then we can write this transformation as:
"A translation of 7 units to the left followed by a translation of 1 unit down".
75.
Explanation: from 3 to 12, you add 9, and then double the 12 to get to 24, and then add 9 again to get to 33, and double it to get 66, so the pattern is to add 9 and then double.
A diagram of parallelogram MNOP is attached below
We have side MN || side OP and side MP || NO
Using the rule of angles in parallel lines, ∠M and ∠P are supplementary as well as ∠M and ∠N.
Since ∠M+∠P = 180° and ∠M+∠N=180°, we can conclude that ∠P and ∠N are of equal size.
∠N and ∠O are supplementary by the rules of angles in parallel lines
∠O and ∠P are supplementary by the rules of angles in parallel lines
∠N+∠O=180° and ∠O+∠P=180°
∠N and ∠P are of equal size
we deduce further that ∠M and ∠O are of equal size
Hence, the correct statement to complete the proof is
<span>∠M ≅ ∠O; ∠N ≅ ∠P
</span>