1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
2 years ago
14

To get maximum current in a circuit, the resistance should be in _____

Physics
2 answers:
Tanzania [10]2 years ago
5 0

Answer:

Series is the correct answer

Vera_Pavlovna [14]2 years ago
5 0

Answer:

no parallel is the correct answer

You might be interested in
Two particles are located on the x axis. particle 1 has a mass m and is at the origin. particle 2 has a mass 2m and is at x = +l
wlad13 [49]

The solution would be like this for this specific problem:

<span>
The force on m is:</span>

<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 1

The force on 2m is:</span>

<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 2

From (1), you’ll get M = 2mx^2 / L^2 and from (2) you get M = m(L - x)^2 / L^2 

Since the Ms are the same, then 

2mx^2 / L^2 = m(L - x)^2 / L^2 

2x^2 = (L - x)^2 

xsqrt2 = L - x 

x(1 + sqrt2) = L 

x = L / (sqrt2 + 1) From here, we rationalize. 

x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1) 

x = L(sqrt2 - 1) / (2 - 1) 


x = L(sqrt2 - 1) </span>

 

= 0.414L

 

<span>Therefore, the third particle should be located the 0.414L x axis so that the magnitude of the gravitational force on both particle 1 and particle 2 doubles.</span>

8 0
3 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
1 year ago
What transfers energy in the form of vibrating electric and magnetic fields?
Rashid [163]
Electromagnetic waves are waves that consist of vibrating electric and magnetic fields. They transfer energy through matter or across space. The transfer of energy by electromagnetic waves is called electromagnetic radiation. ... The two vibrating fields together form an electromagnetic wave.
5 0
2 years ago
Read 2 more answers
 How many centimeters are there in meter? b. 10 c. d 1000 e. 10000 100 2. A centimeter is equal to 1 inch b.½inch C 1/2.54 inch
astra-53 [7]

Answer:

a) There are 100 centimeters in 1 meter.

b) \texttt{A cm is equal to }\frac{1}{2.54}\texttt{ inch}

Explanation:

a) We have the conversion

         1 m = 100 cm

   So there are 100 centimeters in 1 meter.

b) 1 inch = 2.54 cm

    1cm=\frac{1}{2.54}inch

   \texttt{A cm is equal to }\frac{1}{2.54}\texttt{ inch}

8 0
3 years ago
In a cyclic process, a gas performs 123 J of work on its surroundings per cycle. What amount of heat, if any, transfers into or
Margaret [11]

Answer:

123 J transfer into the gas

Explanation:

Here we know that 123 J work is done by the gas on its surrounding

So here gas is doing work against external forces

Now for cyclic process we know that

\Delta U = 0

so from 1st law of thermodynamics we have

dQ = W + \Delta U

dQ = W

so work done is same as the heat supplied to the system

So correct answer is

123 J transfer into the gas

8 0
3 years ago
Other questions:
  • If R is the total resistance of three resistors, connected in parallel, with resistances R1, R2, R3, then 1 R = 1 R1 + 1 R2 + 1
    11·1 answer
  • A string attached to an airborne kite was maintained at an angle of 40.0 with the ground. if 120m of string was reeled in to ret
    12·1 answer
  • From this diagram which of the following can you conclude
    7·2 answers
  • Which statement about van der Waals forces is true?
    8·2 answers
  • An astronaut has a mass of 74.0 kg. 1) how much would the astronaut weigh on mars where surface gravity is 38.0% of that on eart
    11·2 answers
  • g beats can be heard when Question 5 options: when sound waves interfere constructively when sound waves of same frequency inter
    9·1 answer
  • Help:choose the correct statement plz​
    8·2 answers
  • Pls help me I want to get this done
    6·1 answer
  • A block of mass
    7·1 answer
  • Wolfgang pauli hypothesized an exclusion principle. This principle says two electrons in an atom cannot have the same what?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!