Answer:
a) yield strength

b) modulus of elasticity
strain calculation

strain for offset yield point

=0.0046-0.002 = 0.0026
now, modulus of elasticity
= 184615.28 MPa = 184.615 GPa
c) tensile strength

d) percentage elongation

e) percentage of area reduction
Answer:
the value of force, F=4.0N
Explanation:
Firstly, recall velocity-time equation
- v=u+at
- (4)=(2)+a(5)
- a=0.4m/s²
Secondly, recall the Newton's 2nd Law
- <em>F</em><em>=</em><em>ma</em>
- <em>F</em><em>=</em><em>(</em><em>1</em><em>0</em><em>)</em><em>(</em><em>0</em><em>.</em><em>4</em><em>)</em>
- <em>F</em><em>=</em><em>4</em><em>.</em><em>0</em><em>N</em>
Answer:
False
Explanation:
In miles per hour, light speed is about 670,616,629 mph
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.