Answer:
magnetic force on falling Bar F = B*i*L*sin(90) = B*(B*L*v/R)*L = B^2*L^2*v/R
direction of the force is vertically upwards
Explanation:
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

Answer:
In my opinion I think that the answer is C sorry If I get this wrong.
You should come off like would you like to hang out sometime